

Practical Computer Networks and Applications Exercise 2 – IP Version 6 Networks

Prof. Dr. Baun, Prof. Dr. Ebinger, Prof. Dr. Hahm, Prof. Dr. Kappes, Dipl. Inf. (FH) Maurizio Petrozziello, Henry Cocos, M.Sc. {baun, cocos, peter.ebinger, oliver.hahm, kappes, petrozziello}@fb2. fra-uas.de Frankfurt University of Applied Sciences Faculty of Computer Science and Engineering Nibelungenplatz 1 60318 Frankfurt am Main

Contents

Exercise 2

IP Version 6 Addresses

2/27 Practical Computer Networks and Applications | Summer Term 2022

Network Topology - Exercise 2 - ULA

Network Topology of lab exercise 2 – Task 2 ULA

Private Network 1:

fd12:3456:789a:i::0/64

Private Network for host machines and router

Private Network 2:

fd12:3456:789a:ffff::0/64

Private Network spanning all networks

Network Topology – Private Network 2

Private Network 2:

fd12:3456:789a:ffff::0/64

Router 2:

fd12:3456:789a:ffff::ffff

Router 2 is the gateway for all routers in private network 1! The route to **Router 2** needs to be

configured on Router 1!

Network Topology of lab exercise 2 – Task 2 ULA

Network Topology – Private Network 1

Internet

Network Topology of lab exercise 2 -

Task 2 ULA

Private Network 1:

fd12:3456:789a:i::0/64

Router 1:

- 1. eth0 fd12:3456:789a:i::1
- 2. eth1 fd12:3456:789a:ffff::i

Host Network:

Router fd12:3456:789a:i::1 Host 1 fd12:3456:789a:i::10 Host 2 fd12:3456:789a:i::20 Host 3 fd12:3456:789a:i::30

Network Topology – Exercise 2 – Autoconfiguration

Private Network 1:

affe:i::0/64

Private Network for host machines and router

Private Network 2:

fd12:3456:789a:ffff::0/64

Private Network spanning all networks

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Network Topology – Private Network 2

Private Network 2:

fd12:3456:789a:ffff::0/64 Router 2:

fd12:3456:789a:ffff::ffff

Router 2 is the gateway for all routers in private network 1!

The route to **Router 2** needs to be configured on **Router 1**!

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Network Topology – Private Network 1

Network Topology of lab exercise 2 – Task 3 Autoconfiguration

Private Network 1:

affe:i::0/64

Router 1:

1. Interface eth0 - affe:i::0/64

2. Interface eth1 fd12:3456:789a:ffff::i

Host Network:¹

Router 1 - affe:::1

Host 1 - affe:::<VAR>

- Host 2 affe:::<VAR>
- Host 3 affe:::<VAR>

¹<VAR> is the placeholder for a dynamically generated address!

8/27 Practical Computer Networks and Applications | Summer Term 2022

Network Topology – Exercise 2 – Objectives

In the lab exercise you need to accomplish...

- ✓ a successful static configuration of the machines!
- ✓ successful autoconfiguration of the hosts!
- ✓ working static routing on the machines!
- ✓ reachability of all machines (all hosts including **Router 1** and **2**)!

Contents

Exercise 2

IP Version 6 Addresses

10/27 Practical Computer Networks and Applications | Summer Term 2022

IPv6 Addresses

Tabelle: IPv6 address ranges

IPv6 Address	Purpose		
2001:db8::/32	Documentation prefix used for examples		
::1	Localhost		
fc00::/7	Unique Local Addresses (ULA) - also known as "Private" IPv6 addresses. ^a		
fd00::/8	Unique Local Addresses (ULA) - L-bit set to 1 for local IPv6 address prefix		
fe80::/10	Link Local addresses, only valid inside a single broadcast domain.		
2001::/16	Global Unique Addresses (GUA) - Routable IPv6 addresses.		
ff00::0/8	Multicast addresses		

^aCurrently not used! See source: RFC 4193 Section 3.2

11/27 Practical Computer Networks and Applications | Summer Term 2022

IPv6 Addresses

Multicast-Scope – ff00::0/8 multicast groups for specific services in a network. Starting with ff and followed by two flag bits for specific services. ff01 for local interface (not leaving interface), ff02 for link local address space e.g.:

ff0X::1: all IPv6 stations
ff0X::2: all router
ff0X::f: UPnP
ff0X::101: all timeserver (NTP)
ff0X::1:2: DHCPv6 Server

IPv6 Addresses

There are four way of configuring IPv6 addresses: static adressing with ULA (RFC 4193) SLAAC (RFC 4862) Stable Private (RFC 7217) Privacy Extension (RFC 4941)

IPv6 Addresses in Linux

The ip^2 command:

- ip addr...-configuration of IPv6 addresses
- ip route ... configuration of IPv6 routes

-6 option in ip

The option -6 specifies the use of IPv6 addresses. It is important to use this option because without the parameter ip defaults to IPv4!

²The manpage of ip gives you the full list of functions and options!

14/27 Practical Computer Networks and Applications | Summer Term 2022

Static IPv6 unique local addresses - ULA

Tabelle: RFC 4193 Addressing Scheme

Machine	Prefix/L	Global ID	Subnet ID	Interface ID
Router 1	fd00::/8	XX:XXXX:XXXX	i	0000:0000:0000:0001
Host 1	fd00::/8	XX:XXXX:XXXX	i	0000:0000:0000:0010
Host 2	fd00::/8	XX:XXXX:XXXX	i	0000:0000:0000:0020
Host 3	fd00::/8	XX:XXXX:XXXX	i	0000:0000:0000:0030

Static IPv6 unique local addresses - ULA

Tabelle: RFC 4193 Lab Exercise 2

Prefix/L	Global ID	Subnet ID	Interface ID
fd00::/8	40 bits	16 bits	64 bits
fd00::/8	12:3456:789a	:0001	0000:0000:0000:0001

 Besulting IPv6 address:
 fd12:3456:789a:0001:0000:0000:0000

 Short IPv6 address:
 fd12:3456:789a:1::1

The RFC 4862 defines the automatic stateless address generation

The Host uses its MAC address for the generation of the 64-bit Host-ID (**EUI-64**)

The Network Prefix is defined by the scope and or the router (e.g. fe80::/64 for link-local)

 $\textbf{Benefit} \rightarrow \textbf{Stateless generation without an external router}$

Router Advertisement Daemon (radvd)

For the automatic assignment of Network prefixes the router needs a radvd for the management of network prefixes in the network. Without radvd the link local prefix fe80::/64 is used!

Stateless Address Autoconfiguration – SLAAC (RFC 4862)

Stateless Address Autoconfiguration – SLAAC (RFC 4862)

client

server

ICMPv6 - Router Solicitation RS -

Source: :: Destination: ff02::1:<EUI-64>

ICMPv6 - Router Advertisement RA -

Source: fe80::<EUI-64> Destination: fe80::<EUI-64>

Network Prefix for global address fd12::/64

Message Sequence Diagramm for Router Solicitation

Stable Privacy – RFC 7217

The RFC 7217 defines the address generation without the use of a MAC address

In RFC 7217 a random secret key is generated and used for the generation of the Interface-ID

Once generated the Interface-ID is assigned and does not change anymore (until reboot!)

 $\textbf{Benefit} \rightarrow \textbf{Increased}$ security because no MAC address is used for generation!

Secret Key and Kernel parameter

The stable secret value is stored in the directory /proc/sys/net/ipv6/conf/eth0/stable_secret and is generated by setting the Kernel parameter addr_gen_mode=3!

Stable Privacy – RFC 7217

Example of a generated stable private address:

MAC: 86:3a:ea:8a:a7:d9
stable-privacy -> inet6 fe80::6f6d:80e:ab6c:65a0/64
link local -> inet6 fe80::843a:eaff:fe8a:a7d9/64

Example of stable secret parameter:

\$ cat /proc/sys/net/ipv6/conf/eth0/stable_secret c8c8:036d:9312:71e2:eadc:7c9f:0535:649a

Stable Privacy – RFC 7217

In contrast to SLAAC RFC 7217 brings the following benefits:

- + Host's MAC address is not exposed!
- + The address is stable for the Host

Privacy Extension - RFC 4941

The RFC 4941 defines the address generation with a random number

It is using the address in a temporary manner

A new Interface-ID is getting generated periodically

Old Interface-IDs can still be used for established connections

 $\textbf{Benefit} \rightarrow \textbf{Increased}$ security because no MAC address is used for generation!

 $\textbf{Drawback} \rightarrow \textbf{Address is not stable!}$

Random generation of Interface-ID

The RFC 4941^a defines a scheme for the generation of addresses where values for the lifetime are defined and the valid lifetime is calculated with the formula: CREATION_TIME + TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR Where CREATION_TIME is the time at which the address was created, TEMP_PREFERRED_LIFETIME (the maximum time of validity) and DESYNC_FACTOR (a random number in the range of 0 to 600 seconds)!

^aSource:

https://datatracker.ietf.org/doc/html/rfc4941#page-13

Privacy Extension - RFC 4941

Example of a random generated address:

```
MAC: 86:3a:ea:8a:a7:d9
privacy-extension -> inet6 fd12::8992:3c03:d6e2:ed72/64
link local -> inet6 fe80::843a:eaff:fe8a:a7d9/64
```

Random generation of Interface-ID

The address shown above is generated randomly and temporary and cannot be traced back to any host characteristics!

Privacy Extension - RFC 4941

In contrast to SLAAC RFC 4941 brings the following benefits:

- + Host's MAC address is not exposed!
- + The address is generated dynamically over time!

 $\textbf{Benefit} \rightarrow \textbf{Increased}$ security because no MAC address is used for generation!

In contrast to Stable Privacy RFC 4941 brings the following benefits:

+ Host address is changed over time, therefore increased security!

Benefit \rightarrow Increased security because address expires! **Drawback** \rightarrow Address is not stable!

Neighbor Discovery Protocol – NDP

Configuration of the machines

Please follow these rules:

Make your configurations statically! Use the tool $\verb"ip"$ exclusively!

Save your configuration on file! Use an USB-Drive for the extraction!

Test your setup and document it accurately! Demonstrate it in the lab exercise!

Make slides of your configurations! Use the command-line snippets, screenshots and Wireshark captures for your documentation!

Non persistent configuration on machines

Please be aware, that the configurations on the machines are static and will be deleted after a reboot! Make sure to save your progress on an external drive!