
Cloud-Native Components

Cloud Computing
Cloud-Native applications

Slide set 6

Henry-Norbert Cocos
cocos@fb2.fra-uas.de

Computer Science
Department of Computer Science and Engineering

Frankfurt University of Applied Sciences

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 1/26

Cloud-Native Components

Agenda

1 Cloud-Native Applications

2 Components of Cloud-Native Computing

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 2/26

Cloud-Native Components

Traditional Applications

Monolithic
Traditional (monolithic) architectures do not scale up to the demands of the
customers.
These architectures are heavyweight and the deployment in the CSP is very
complicated.

Three-Tier architectures
Three-Tier architectures are an outdated architecture for web applications.
The deployment depends on specific web server software.
The frameworks are very heavyweight and not interoperable.

Service-oriented architectures
SOA was a first direction into reusable services for business.
Every business application is orchestrated with individual atomic services.
However the ESB is a bottleneck and limits the whole architecture.

Question

What do we need for the development of cloud-ready applications?
Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 3/26

Cloud-Native Components

12 factor app Source: https://12factor.net/

A methodology for developing web apps, or software-as-a-service offerings.
Demands:

Declarative formats for setup automation, to minimize time and cost. ⇒ Infrastructure as Code!
Clean contract with the underlying operating system, offering maximum portability. ⇒ Container
Runtime!
Deployment on modern cloud platforms, without the need for servers and systems administration.
⇒ PaaS/CaaS/FaaS!
Minimize divergence between development and production. ⇒ Staging!
Scale up without significant changes to tooling, architecture, or development practices. ⇒
DevOps!

Applicability

The twelve-factor methodology can be applied to apps written in any programming language, and
which use any combination of backing services (database, queue, memory cache, etc).

Question

How can these demands be fulfilled in practice?

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 4/26

https://12factor.net/

Cloud-Native Components

12 factor app Source: https://12factor.net/

1 Codebase
One codebase tracked in revision control,
many deploys

2 Dependencies
Explicitly declare and isolate dependencies

3 Config
Store config in the environment

4 Backing services
Treat backing services as attached
resources

5 Build, release, run
Strictly separate build and run stages

6 Processes
Execute the app as one or more stateless
processes

7 Port binding
Export services via port binding

8 Concurrency
Scale out via the process model

9 Disposability
Maximize robustness with fast startup and
graceful shutdown

10 Dev/prod parity
Keep development, staging, and
production as similar as possible

11 Logs
Treat logs as event streams

12 Admin processes
Run admin/management tasks as one-off
processes

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 5/26

https://12factor.net/

Cloud-Native Components

Cloud-Native Computing Foundation – Landscape

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 6/26

Cloud-Native Components

Cloud-Native definition

Definition Source: Cloud-Native Computing, Kratzke

“A cloud-native application is a distributed, observable, elastic service-of-services
system optimized for horizontal scalability that isolates its state in (a minimum of)
stateful components. The application and each self-contained delivery unit of this
application are designed according to cloud-focused design patterns and operated on
these elastic self-service platforms.“

Question
How can we implement Cloud-Native applications and what technologies and workflows
do we need?

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 7/26

Cloud-Native Components

Cloud-Native implementation Source: Cloud-Native Computing, Kratzke

1 Containerization⇒ Slide Set 2!
Containers allow developers to package applications and their dependencies in
isolated environments and run them on any cloud platform.

2 Orchestration Slide Set 2!
Orchestration tools such as Kubernetes make it possible to provision, scale, monitor
and manage container clusters automatically.

3 Microservices Slide Set 5!
Cloud-native applications generally comprise smaller, independent services
(microservice architecture) that communicate via resource APIs.

4 Infrastructure as Code Slide Set 2!
Infrastructure as code means that the entire infrastructure (e.g., servers, networks,
load balancers) is defined in code.

5 Automation This Slide Set!
By automating development, testing, and deployment processes using deployment
pipelines, teams can provide faster and more reliable software updates.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 8/26

Cloud-Native Components

Components of Cloud-Native

IDEAL Source: Cloud-Native Computing, Kratzke

"[..] a cloud-native application should follow the IDEAL model, i.e., it should have an
Isolated state, be Distributed in nature, be Elastic via horizontal scaling, be operated
via an Automated Management System, and its components should be Loosely
Coupled."

Benefits Source: Cloud-Native Computing, Kratzke

"[...] common motivations for cloud-native application architectures must also be taken
into account; for example, that software-based solutions can be brought into production
much faster today (development speed), that systems should be designed from the
ground up to be fault-isolating, fault-tolerant and self-healing (security), that more
and more horizontal (instead of vertical) application scaling must be made possible
(scaling) and, finally, that a wide variety of (mobile) platforms and legacy systems
must be supported (client diversity)."

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 9/26

Cloud-Native Components

DevOps

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

1 Principles of flow
Make work visible
Limit work in progress
Minimize bottlenecks

2 Principles of feedback
Recognize problems early
Solve problems immediately
Taking professional
responsibility for problems

3 Automated execution
environment

Container plattform
Implementation of Services
(Dev)
Operation of Services (Ops)

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 10/26

Cloud-Native Components

DevOps – 1.) Principles of flow (1/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Make work visible
Visual work boards (e.g.
Kanban boards) are often
used for this purpose.
Modern version management
systems such as GitLab can
create such overviews
automatically.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 11/26

Cloud-Native Components

DevOps – 1.) Principles of flow (2/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Limit work in progress
The number of features to be
implemented that developers
should have “on their desks”
simultaneously should be
limited. Otherwise, the risk
of jumping back and forth
between too many tasks is
too significant. Above all,
you should avoid handing
over tasks to development
unplanned (“Can you please
quickly ...”). Otherwise, you
risk overloading developers
who can only save themselves
through “tactical fouls” .

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 12/26

Cloud-Native Components

DevOps – 1.) Principles of flow (3/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Minimize bottlenecks
Manual activities often cause
bottlenecks in software
development. In particular,
the degree of automation of
activities such as the creation
of test and production
environments, the testing of
changes, or the execution of
code deployments should
continuously increase in a
DevOps culture to minimize
bottlenecks.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 13/26

Cloud-Native Components

DevOps – 2.) Principles of feedback (1/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Recognize problems early
Complex systems cannot be
fully grasped and understood
by a single person. Therefore,
assumptions made during
design should be continuously
tested. This is done with
chaos engineering, for
example, to build confidence
in the system’s ability to
withstand error and failure
situations. This requires,
among other things, feedback
loops in the production
system that continuously and
automatically collect
telemetry data.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 14/26

Cloud-Native Components

DevOps – 2.) Principles of feedback (2/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Solve problems immediately
This means that
problem-solving in the
production system should
always be given higher
priority than further feature
development. If problems
arise in the production
system, the development
pipeline should be stopped,
and all available development
staff should focus on solving
the problem in the production
system.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 15/26

Cloud-Native Components

DevOps – 2.) Principles of feedback (3/3)

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

Taking professional responsibility
for problems

The DevOps philosophy, states
that developers also have
responsibility for operations
(“you build it, you run it”). This
means that responsibility for
quality, reliability, and
decision-making authority lies
with those who do the work and
have the most technical
expertise. DevOps teams,
therefore, usually have greater
autonomy but also greater
responsibility than pure
development teams, which can
throw responsibility “over the
wall” to operations.

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 16/26

Cloud-Native Components

DevOps – 3.) Automated execution environment

Infra App

Telemetry consolidationAnalysisArchitecture
Development

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

C
od

e
D

ev
el

op
m

en
t

Continous
Integration

Code
Repository

Continous Build + Deployment Pipeling

Image
Repository

Horizontally scalable Container
Orchestration

Platforms

Telemetiric
Data

Production
environment

Test environment

Development
environment

...

1

2

3

3 Automated execution
environment

Container plattform
Implementation of Services
(Dev)
Operation of Services (Ops)

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 17/26

Cloud-Native Components

Outlook

1st part: Introduction
2nd part: Technological foundations
3rd part: Service models, deployment models
4th part: Adoption and strategy
5th part: Architectures and applications
6th part: Cloud-Native applications ⇐= This slide set
7th part: Current and future trends

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 18/26

Cloud-Native Components

7th part: Current and future trends

Topics:
Introduction

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 19/26

Cloud-Native Components

Thank You
For Your Attention!

Henry-Norbert Cocos, M.Sc
Frankfurt University of Applied Sciences
Room 1-230
� +49 69 1533-2699
B cocos@fb2.fra-uas.de
m www.henrycocos.de

Henry-Norbert Cocos | Summer term 2024 | Slide set 6 | Cloud Computing 20/26

www.henrycocos.de

