
Software Architectures Distributed Systems Distributed Architectures Summary

Cloud Computing
Architectures and applications in Cloud Computing

Slide set 5

Henry-Norbert Cocos
cocos@fb2.fra-uas.de

Computer Science
Department of Computer Science and Engineering

Frankfurt University of Applied Sciences

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 1/66

Software Architectures Distributed Systems Distributed Architectures Summary

Agenda

1 Software Architectures

2 Distributed Systems and Cloud Computing

3 Distributed Architectures in Cloud Computing

4 Summary

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 2/66

Software Architectures Distributed Systems Distributed Architectures Summary

Objectives of this slide set

Learn what Software Architectures are!
Learn what Distributed Systems are!
Learn different architectural styles of distributed systems!
Learn the relationship between Software Architectures and Cloud Computing!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 3/66

Software Architectures Distributed Systems Distributed Architectures Summary

What are Software Architectures?

Definition by ChatGPT
Software architecture refers to the high-level structure of a software system,
encompassing its components and their interactions. It serves as a blueprint for both
the system and the project developing it, providing a set of rules and guidelines for the
system’s organization and design. The primary purpose of software architecture is to
ensure that a system meets its requirements, including functional and non-functional
properties like performance, security, and maintainability.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 4/66

Software Architectures Distributed Systems Distributed Architectures Summary

Characteristics of Software Architectures (not extensive!)
Modularity – The degree to which a
system’s components can be separated and
recombined.

Scalability – The ability of a system to
handle increased load by adding resources or
by expanding its capacity.

Performance – How well a system performs
under specified conditions, often measured
in terms of response time, throughput, and
resource utilization.

Availability – The degree to which a system
is operational and accessible when required
for use.

Interoperability – The ability of a system to
work with other systems or components,
often through common interfaces or
standards.

Portability – The ability of a system to run
on various platforms or environments
without modification.

Reusability – The degree to which
components can be used in different systems
or contexts without modification.

Testability – The ease with which a system
or its components can be tested to ensure
they work correctly.

Transparency – The extent to which the
complexities of a system are hidden from the
user or developer, making it easier to use or
manage.

Resilience – The ability of a system to
recover quickly from failures and continue to
operate under adverse conditions.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 5/66

Software Architectures Distributed Systems Distributed Architectures Summary

Pattern Oriented Software Architectures

Pattern Oriented Software Architectures
More details on the development of reusable and flexible software in the module 6.1
Pattern Oriented Software Architecture!

SOLID principles
SOLID is a set of five principles for designing software that is easy to maintain, extend,
and refactor. These principles help in creating robust and flexible object-oriented
designs. The acronym SOLID stands for:

Single Responsibility Principle (SRP)
Open/Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)

Cloud Architectures
What about cloud architectures? What is the foundation of the design and
implementation of software for the cloud?

Distributed systems
For the development of software for the cloud one has to look at distributed systems
and their characteristics!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 6/66

Software Architectures Distributed Systems Distributed Architectures Summary

What is a distributed system?

Definition by ChatGPT
A distributed system is a network of independent computers that work together to
appear as a single coherent system to the end user. These systems are designed to
handle tasks that are too large or complex for a single machine to manage effectively.
They offer numerous benefits, such as scalability, fault tolerance, and resource
sharing, which are essential for modern computing environments like cloud services,
big data processing, and global web applications.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 7/66

Software Architectures Distributed Systems Distributed Architectures Summary

Characteristics of Distributed Systems
Multiple Independent Components:

A distributed system consists of multiple autonomous components (nodes), such as
computers, servers, or virtual machines, that communicate over a network.
Each node in the system operates independently, but they work together to achieve a
common goal.

Concurrent Processing:
Tasks are distributed across multiple nodes, allowing for concurrent execution and improved
performance.

Scalability:
Distributed systems can scale horizontally by adding more nodes to handle increased load
and storage requirements.

Fault Tolerance and Reliability:
The system can continue to function even if some nodes fail, thanks to redundancy and
failover mechanisms.

Transparency:
The system’s complexity is hidden from users, making the system appear as a single entity.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 8/66

Software Architectures Distributed Systems Distributed Architectures Summary

Components of Distributed Systems

Nodes
Individual computers or servers that participate in the distributed system.

Network
The communication medium that connects nodes, allowing them to share data and
resources.

Middleware
Software that provides common services and capabilities to applications beyond what’s
offered by the operating system. It facilitates communication and management of data in a
distributed environment.
Example: Message brokers like Apache Kafka or RabbitMQ

Data Storage:
Distributed systems often use distributed databases or file systems to manage data across
multiple nodes.
Example: Distributed databases like Cassandra or MongoDB.

Coordination Services:
Mechanisms that ensure nodes can coordinate tasks, manage resources, and maintain
consistency.
Example: Zookeeper or Consul.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 9/66

Software Architectures Distributed Systems Distributed Architectures Summary

Examples of Distributed Systems

Client

Client

Client

Client

Client

Client

Client

Client

Centralized
System

Peer

PeerPeer

Peer Peer

Peer Peer

Peer

Distributed
System

Web Applications:
Large-scale web services like Google
Search or Facebook, where servers handle
millions of user requests concurrently.

Distributed Databases:
Systems like Apache Cassandra or Google
Bigtable, which store and manage data
across multiple servers for high availability
and scalability.

Cloud Services:
Platforms like AWS or Microsoft Azure
provide on-demand computing resources
distributed across the globe.

Content Delivery Networks (CDNs):
Systems like Akamai or Cloudflare that
distribute content to users from servers
located worldwide to reduce latency and
improve load times.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 10/66

Software Architectures Distributed Systems Distributed Architectures Summary

Challenges in Distributed Systems (1/2)

Client

Client

Client

Client

Client

Client

Client

Client

Centralized
System

Peer

PeerPeer

Peer Peer

Peer Peer

Peer

Distributed
System

Network Latency
Communication between nodes can
introduce delays, affecting performance
and response times.

Fault Tolerance
Ensuring the system continues to operate
despite node failures requires redundancy
and complex error-handling mechanisms.

Consistency
Maintaining a consistent state across
distributed nodes, especially during
updates, is challenging and often involves
trade-offs (as highlighted by the CAP
theorem).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 11/66

Software Architectures Distributed Systems Distributed Architectures Summary

Challenges in Distributed Systems (2/2)

Client

Client

Client

Client

Client

Client

Client

Client

Centralized
System

Peer

PeerPeer

Peer Peer

Peer Peer

Peer

Distributed
System

Synchronization
Coordinating actions and data among
nodes to ensure they work in harmony is
complex, especially in the presence of
network partitions.

Scalability
Managing the growth of the system
without performance degradation requires
careful design and resource management.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 12/66

Software Architectures Distributed Systems Distributed Architectures Summary

Fallacies of Distributed Systems

1 The network is reliable!
2 Latency is zero!
3 Bandwidth is infinite!
4 The network is secure!
5 Topology doesn’t change!
6 There is one administrator!
7 Transport cost is zero!
8 The network is homogeneous!

The fallacies describe usual problems in
the implementation of distributed
systems.

History

The Fallacies of Distributed Systems were
originally formulated by L. Peter Deutsch from
Sun Microsystems in 1994. Bill Joy and Tom
Lyon had already identified the first four as
The Fallacies of Networked Computing.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 13/66

Software Architectures Distributed Systems Distributed Architectures Summary

Fallacy 1: The network is reliable

Service A Service B

HTTP

HTTP

Figure: Fallacy 1: The network is reliable

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 14/66

Software Architectures Distributed Systems Distributed Architectures Summary

Fallacy 2: Latency is zero & Fallacy 4: The network is secure

Component A Comonent B

Service A Service BHTTP

HTTP

Local Context Local Context

Local Context

TLocal

TRemote

TRemote > TLocal

Remote Procedure Call

Local Procedure Call

Figure: Fallacy 2: Latency is zero

Service A Service BHTTP

Client Local Context

Service

Man in the middle

Figure: Fallacy 4: The network is secure

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 15/66

Software Architectures Distributed Systems Distributed Architectures Summary

Fallacy 8: The network is homogeneous

Service A Service B

HTTP
Client Local Context

Proxy

Router

Firewall

Switch

Proxy

HTTP

Figure: Fallacy 8: The network is homogeneous.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 16/66

Software Architectures Distributed Systems Distributed Architectures Summary

Communication in distributed systems Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

Communication between processes is foundation of distributed systems.
Important for the communication between independent systems is Inter-Process
Communication.
There are many different styles (e.g. Remote Procedure Calls, Message-Oriented
Middlewares, etc) and architectures for communication (Client-Server, 3-tier
Architecture, etc.).

Scope of this lecture
We will only discuss the most prominent architectures in this lecture! The rest is
not scope of this lecture! If you want to know more details look into the book
Distributed Systems, M. van Steen and A.S. Tanenbaum.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 17/66

Software Architectures Distributed Systems Distributed Architectures Summary

Application Program Interface Source:https://en.wikipedia.org/wiki/API

API – Definition by Wikipedia

An application programming interface (API) is a way for two or more computer
programs or components to communicate with each other. It is a type of
software interface, offering a service to other pieces of software. A document or
standard that describes how to build or use such a connection or interface is called an
API specification. A computer system that meets this standard is said to implement or
expose an API. The term API may refer either to the specification or to the
implementation. Whereas a system’s user interface dictates how its end-users interact
with the system in question, its API dictates how to write code that takes advantage of
that system’s capabilities.

APIs are a central component in the development of software
especially in the realm of distributed systems.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 18/66

https://en.wikipedia.org/wiki/API

Software Architectures Distributed Systems Distributed Architectures Summary

APIs in the context of Cloud Computing Source:https://en.wikipedia.org/wiki/API

For the implementation of web services there are two styles:
SOAP (Simple Object Access Protocol)
REST (REpresentational State Transfer)

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 19/66

https://en.wikipedia.org/wiki/API

Software Architectures Distributed Systems Distributed Architectures Summary

Web Services

Web services are services which are offered by a server to clients which access the
service via a standardized method and use a standardized format (HTML, XML,
JSON). Web services use protocols like HyperText Transfer Protocol (HTTP) for the
exchange of data. The standardized way of integrating Web-based applications using
the XML, SOAP, WSDL and UDDI open standards over an Internet Protocol
backbone.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 20/66

Software Architectures Distributed Systems Distributed Architectures Summary

SOAP Web Services – Architecture

Actors in SOAP services:
Service Requestor
Service Provider
Service Registry

Components of SOAP services:
Web Service Description
Language (WSDL)
SOAP Messages

Service Requestor

Service Registry

Service Provider
Bind

SOAP

Find Publish

WSDL
Service Desription

WSDL
Service Desription

WSDL
Service Desription

ServiceRequest

Service
Call

Naming
Service

SOAP
Components

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 21/66

Software Architectures Distributed Systems Distributed Architectures Summary

SOAP – Message Format and WSDL

SOAP Envelope – The element of
an XML message identifying it as a
SOAP message (example next slide).
SOAP Header – A collection of one
or more header blocks targeted at
each SOAP receiver.
SOAP Header Block – One ore
more discrete computational blocks
within the SOAP header.
SOAP Body – The body of the
message. The interpretation and
processing of SOAP body is defined
by header blocks.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 22/66

Software Architectures Distributed Systems Distributed Architectures Summary

SOAP – Message Source:https://en.wikipedia.org/wiki/SOAP

1 POST /InStock HTTP/1.1
2 Host: www.example.org
3 Content−Type: application/soap+xml; charset=utf−8
4 Content−Length: 299
5 SOAPAction: "http://www.w3.org/2003/05/soap−envelope"
6

7 <?xml version="1.0"?>
8 <soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap−envelope" xmlns

:m="http://www.example.org">
9 <soap:Header>

10 </soap:Header>
11 <soap:Body>
12 <m:GetStockPrice>
13 <m:StockName>T</m:StockName>
14 </m:GetStockPrice>
15 </soap:Body>
16 </soap:Envelope>

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 23/66

https://en.wikipedia.org/wiki/SOAP

Software Architectures Distributed Systems Distributed Architectures Summary

REpresentational State Transfer

Invented by Roy Fielding in the dissertation Architectural Styles and the Design of
Network-based Software Architectures at UC Irvine.
Aim: construction of a universally usable API over the WWW!
Result: request-response-based architectural style making use of HTTP-verbs

Principles of REST:
Client-Server Architecture – The server (provider) provides a service that can be
requested by the client (requestor) if required.
Caching – The requests should be cacheable.
Statelessness – Each REST message contains all the information to understand the
message. Neither the server nor the application should store status information between
two messages.
Multi-Layered Systems – As a result it is sufficient to offer the user just one interface.
The underlying layers can remain hidden, thus simplifying the architecture as a whole.
Unified API – REST-based services should offer a standardized interface based on
self-describing messages, addressable resources, representations of resources and the
principle of Hypermedia as the Engine of Application State (HATEOAS) principle.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 24/66

Software Architectures Distributed Systems Distributed Architectures Summary

CRUD Operations Source:https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

"In computer programming, create, read, update, and delete (CRUD) are the four basic
operations of persistent storage.CRUD is also sometimes used to describe user interface
conventions that facilitate viewing, searching, and changing information using computer-based
forms and reports."

https://somedomain/user/123?format=json
a GET request to /user/ returns a list of registered users on a system
a POST request to /user/ creates a user with the ID 123 using the body data.
a DELETE request to /user/123 deletes user 123

Operation SQL REST
Create INSERT POST, PUT
Read SELECT GET

Update UPDATE PUT
Delete DELETE DELETE

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 25/66

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Software Architectures Distributed Systems Distributed Architectures Summary

Consistency models in data-centric applications

Consistency models
In the context of databases, ACID and BASE are principles that describe different
approaches to managing transactions and consistency. They represent two different
philosophies for ensuring data integrity and availability in database systems, particularly
in distributed environments.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 26/66

Software Architectures Distributed Systems Distributed Architectures Summary

ACID Principles

ACID (Atomicity, Consistency, Isolation, and Durability). The principles are associated
with relational databases and ensure that transactions are processed reliably.

Atomicity
Ensures that all parts of a transaction are treated as a single unit, which either completes
entirely or not at all. There are no partial transactions.
Prevents data corruption in the case of a failure during a transaction.
Example: In a banking system, a transaction that transfers money from one account to
another should debit one account and credit another as a single atomic action. If one part
fails, the whole transaction is rolled back.

Consistency
Ensures that a transaction brings the database from one valid state to another, maintaining
data integrity. All rules (constraints, triggers, etc.) must be satisfied.
Guarantees that database constraints are not violated, preserving the correctness of the
data.
Example: In an e-commerce system, an order cannot be placed if the inventory does not
have enough items in stock. Consistency ensures that the stock levels are correctly updated.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 27/66

Software Architectures Distributed Systems Distributed Architectures Summary

ACID Principles

Isolation
Ensures that transactions are executed in isolation from each other, meaning the
intermediate states of a transaction are not visible to other transactions until the
transaction is complete.
Prevents concurrent transactions from interfering with each other, ensuring
predictable results.
Example: In a ticket booking system, two users booking the last available ticket
simultaneously should not both succeed. Isolation ensures that one transaction
completes before the other starts.

Durability
Ensures that once a transaction has been committed, it remains so, even in the case
of a system failure.
Guarantees that committed transactions are permanently recorded.
Example: Once a purchase is confirmed in an online store, it remains confirmed even
if there is a subsequent system crash.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 28/66

Software Architectures Distributed Systems Distributed Architectures Summary

BASE Principles

BASE (Basically Available, Soft state, Eventual consistency). The principles are
associated with NoSQL databases and are designed for systems that prioritize availability and
partition tolerance over strict consistency, which is often necessary in distributed systems.

Basically Available – Rather than enforcing immediate consistency, BASE-modelled
NoSQL databases will ensure availability of data by spreading and replicating it across the
nodes of the database cluster.

Soft State – Due to the lack of immediate consistency, data values may change over
time. The BASE model breaks off with the concept of a database which enforces its own
consistency, delegating that responsibility to developers.

Eventually Consistent – The fact that BASE does not enforce immediate consistency
does not mean that it never achieves it. However, until it does, data reads are still
possible (even though they might not reflect the reality).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 29/66

Software Architectures Distributed Systems Distributed Architectures Summary

ACID vs. BASE

Consistency vs. Availability
ACID prioritizes strict consistency, ensuring that transactions are reliable and
isolated.
BASE relaxes consistency for higher availability and resilience in distributed
environments.

Transaction Complexity
ACID transactions are more complex and are suited for applications requiring strong
transactional integrity, like financial systems.
BASE is simpler and more scalable, fitting applications that can tolerate some level
of inconsistency, like social networks or content delivery systems.

Use Cases
ACID: Banking systems, order processing, inventory management where precise
transaction control is critical.
BASE: Distributed systems like cloud services, big data applications, and real-time
analytics where responsiveness and availability are more critical than immediate
consistency.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 30/66

Software Architectures Distributed Systems Distributed Architectures Summary

Summary ACID vs. BASE

ACID vs. BASE
ACID focuses on reliable and consistent transactions, making it ideal for systems
where data integrity is paramount.
BASE offers flexibility, availability, and scalability at the cost of relaxed
consistency, suitable for distributed systems where high availability and partition
tolerance are crucial.

CAP theorem
The ACID and BASE principles stem form the CAP theorem. The CAP Theorem is a
fundamental principle in the design of distributed systems. Formulated by computer
scientist Eric Brewer, it states that a distributed system can only guarantee at most two
out of three fundamental properties of distributed data-centric applications!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 31/66

Software Architectures Distributed Systems Distributed Architectures Summary

CAP theorem (1/2)

Availability Consistency

 Partition
Tolerance

AP

CA

CP

Consistency – Every read receives
the most recent write or an error.
Availability – Every request receives
a (non-error) response, without the
guarantee that it contains the most
recent write.
Partition tolerance – The system
continues to operate despite an
arbitrary number of messages being
dropped (or delayed) by the network
between nodes.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 32/66

Software Architectures Distributed Systems Distributed Architectures Summary

CAP theorem (2/2)

Availability Consistency

 Partition
Tolerance

AP

CA

CPDynamo DB
Cassandra
CouchDB

HBase
Redis

MongoDB

MySQL
PostgreSQL
SQLServer

CA – The system is always
consistent and available as long
as there is no network partition
CP – The system is consistent
and can handle partitions, but
might sacrifice availability. If a
partition occurs, some nodes
might not respond until the
partition is resolved.
AP – The system is always
available and can handle
partitions, but it might serve
outdated or inconsistent data
during partitions.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 33/66

Software Architectures Distributed Systems Distributed Architectures Summary

Client/Server Architecture Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

Client Server

HTTP

HTTP

Request

Response

Definition by van Steen
"In the basic client-server model, processes in a distributed system are divided into
two (possibly overlapping) groups. A server is a process implementing a specific
service, for example, a file system service or a database service. A client is a process
that requests a service from a server by sending it a request and subsequently waiting
for the server’s reply."

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 34/66

Software Architectures Distributed Systems Distributed Architectures Summary

Client/Server – The World Wide Web Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

The core of a Web site is
formed by a process that has
access to a local file system
storing documents!
A URL specifies the
application-level protocol for
transferring the document
across the network.
The communication between
a browser and Web server is
standardized: they both
adhere to HTTP!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 35/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier Architecture Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

The Web started out as the relatively simple two-tiered client-server system. . .
. . . however more layers can be added!

Definition Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

"In software engineering, multitier architecture (often referred to as n-tier architecture)
is a client–server architecture in which presentation, application processing and data
management functions are physically separated. The most widespread use of multitier
architecture is the three-tier architecture[...]."

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 36/66

Software Architectures Distributed Systems Distributed Architectures Summary

Example:Common Gateway Interface Source: Distributed Systems, M. van Steen and A.S. Tanenbaum

CGI defines a standard way by
which a Web server can execute a
program taking user data as input.

Usually user data come from an
HTML form; it specifies the
program that is to be executed at
the server side.

The server sees the request, it
starts the program named in the
request and passes it the parameter
values.

In other words, the server does
nothing but delegate the fetching
of a document to an external
program.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 37/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier Architecture

Presentation Tier

Business Logic Tier

Data Access Tier

Data Base Tier

N-Tier Architecture
Presentation Tier –
User interface of the
application.
Business Logic Tier –
Application logic of the
system.
Data Access Tier –
Logic for the access of
the Data Base (optional).
Data Base Tier – Data
Base of the system.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 38/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier Architecture in Software development

The classic setup is the 3-Tier-Architecture.
It is common that the data access tier is considered a sublayer of the business logic
tier.
Typically it encapsulates the API definition for the data access.

Web development usage
This architecture is used by many frameworks for the development of web applications
(e.g, Java Platform, Enterprise Edition (Java EE), now Jakarta EE).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 39/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier Architecture deployment

Presentation Tier

Business Logic Tier

Data Access Tier

Data Base

Business Logic Tier

Data Access Tier

Data Base

Presentation Tier

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 40/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier-Architecture Example: Jakarta EE

Presentation Layer

Business Logic
Layer

Persistence Layer

Database Layer

Relational Database

Java Server Pages (JSP)

Servlets

Java Server Faces (JSF)

Java Web Container

Session Bean

Message-Driven Bean

Enterprise Java Bean Container

Entity

Java Persistence API

Java EE Application Server

Web Browser

HTML

Java Application
Client Jakarta EE

It provides a productive (and complicated) infrastructure
of services offering many different types of components.

Each component is deployable separately, with many
ways for the various parts to communicate with each
other.

Those services are delivered through the use of software
packages called application servers.

Source: M. Sciabarrà, Learning Apache Openwhisk: Developing Open Serverless
Solutions

"At the time Java was considered to be a programming
language suitable for building large, scalable applications
(meant to replace C++). Scripting languages like Python
were not yet largely used, and JavaScript was still in its
infancy."

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 41/66

Software Architectures Distributed Systems Distributed Architectures Summary

N-Tier Architecture – Web development usage

For the development of web services 3-Tier-Architectures were used to implement large
scale web applications (e.g. e-commerce systems):

A front-end web server serving static content, maybe some cached dynamic
content.
A application server running the application code (e.g., Jakarta EE).
A back-end database or data store.

Drawbacks
Infrastructure does not scale very good!
The application server software is complex and proprietary!
The application code needs to be packaged in application server ⇒ Large Binary
Package!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 42/66

Software Architectures Distributed Systems Distributed Architectures Summary

Service-Oriented Architecture

Service-Oriented Architecture focus on discrete services instead of a monolithic
design.
A service is a discrete unit of functionality that can be accessed remotely and
acted upon and updated independently.
Aim: Independence of vendors and technologies, Functional decomposition of
(business) service.

According to the Open Group a service has four properties:
It logically represents a repeatable business activity with a specified outcome.
It is self-contained.
It is a black box for its consumers, meaning the consumer does not have to be
aware of the service’s inner workings.
It may be composed of other services.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 43/66

Software Architectures Distributed Systems Distributed Architectures Summary

Service-Oriented Architecture (1/3)

Business
Service

Business
Logic

Business
Service

Business
Service

Business
Service

Enterpise
Service

Bus

Orchestration Engine

Integration Hub

Enterprise
Service

Enterprise
Logic

Enterprise
Service

Enterprise
Service

Enterprise
Service

Application
Service

Application
Logic

Application
Service

Infra.
Service

Infratructure
Logic

Infra.
Service

Business Logic
Consists of domain specific,
atomic business services
defined by the business
experts.
No code definition here!

Enterprise Logic
Fine granular, shared
enterprise services defined
by the sw developers.
Building blocks for the
business services connected
by an Orchestration
Engine.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 44/66

Software Architectures Distributed Systems Distributed Architectures Summary

Service-Oriented Architecture (2/3)

Business
Service

Business
Logic

Business
Service

Business
Service

Business
Service

Enterpise
Service

Bus

Orchestration Engine

Integration Hub

Enterprise
Service

Enterprise
Logic

Enterprise
Service

Enterprise
Service

Enterprise
Service

Application
Service

Application
Logic

Application
Service

Infra.
Service

Infratructure
Logic

Infra.
Service

Application Logic
The implemented
application services are
not as fine grained as
business and enterprise
services.
Once implemented and not
intended for reuse by other
services.
The implemented
infrastructure services are
implemented for technical
solutions.
Implementations are
usually monitoring, logging
and authentication.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 45/66

Software Architectures Distributed Systems Distributed Architectures Summary

Service-Oriented Architecture (3/3)

Business
Service

Business
Logic

Business
Service

Business
Service

Business
Service

Enterpise
Service

Bus

Orchestration Engine

Integration Hub

Enterprise
Service

Enterprise
Logic

Enterprise
Service

Enterprise
Service

Enterprise
Service

Application
Service

Application
Logic

Application
Service

Infra.
Service

Infratructure
Logic

Infra.
Service

Orchestration Engine:
Connector of business
services to enterprise logic.
Orchestrates the use of
services and usage (e.g.
transaction management or
conversions).
Implements a database for
the coordination of
services.

Integration Hub:
Connector between the
different applications and
services of the enterprise.
Integrates the code parts of
the architecture.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 46/66

Software Architectures Distributed Systems Distributed Architectures Summary

Service-Oriented Architecture

Drawbacks
The Orchestration and Integration Hub pose many limitations on the architecture:

One single point for coupling of services.
Only one (or few) databases for service orchestration ⇒ Bottleneck!
All service share one single architectural pattern ⇒ all need to oblige to the ESB!

The distributed nature of the services led to the following problems:
Requests (and transactions) were distributed over the whole architecture!
Performance of the architecture was rather bad!

This unites the drawbacks of monolithic architectures!

Therefore Microservice Architectures were developed!

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 47/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice Architecture Source: Martin Fowler, https://martinfowler.com/articles/microservices.html

Definition by Martin Fowler
"The microservice architectural style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are
built around business capabilities and independently deployable by fully automated
deployment machinery. There is a bare minimum of centralized management of these
services, which may be written in different programming languages and use
different data storage technologies.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 48/66

https://martinfowler.com/articles/microservices.html

Software Architectures Distributed Systems Distributed Architectures Summary

Principles for developing Microservices Source: Cloud-Native Computing, Kratzke

1 Create models around business concepts
2 Create a culture of automation
3 Hide internal implementation details
4 Decentralize
5 Define independently updatable units
6 Isolate errors
7 Build easily monitored services

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 49/66

Software Architectures Distributed Systems Distributed Architectures Summary

Properties of a Microservice architecture

Distributed – Each service runs in its own process.
Bounded Context – Each service is its own domain.
Fine Granularity – Each service is responsible for its own domain.
Isolation – Data is distributed over the architecture! No Single Point of Truth
(SPOT).

Single Point of Truth (SPOT)

A Single Point of Truth in software architecture is a place where different entities
(classes, services, etc.) have a single point of data retrieval and therefore the integration
of the architecture is done in the data storage (usually a relational database).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 50/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice Architecture

Data Base

Service

Module

Module

Data Base

Service

Module

Module

Data Base

Service

Module

Module

Data Base

Service

Module

Module

API
Layer

Client Client Client Microservice Architecture
Each service can be replicated.

Services communicate with each
other via defined APIs (e.g.
REST/HTTP).

A high degree of decoupling but
less reuse!

Each service ships its own context
(classes, entities) and databases.
No sharing of code or data storage!

API-Layer

An optional layer for the connection of
consumer (e.g. users) and the system.
Here functionality like service discovery is
implemented.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 51/66

Software Architectures Distributed Systems Distributed Architectures Summary

Operational Reuse

Microservice architecture favor duplication over coupling.
However sometimes coupling is useful if elements could be reused (especially
technical infrastructure!).
The common use cases here is functionality like monitoring and logging.
This type of schema is called operational reuse and refers to the sidecar pattern.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 52/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice Sidecar

Data Base

Service

Module

Module

Module

Module

Sidecar

Monitoring

Backup

Logging

Supporting
Service

Sidecar
The sidecar implements the common
services reused though out the architecture.

The sidecar is implemented as a separate
component in each microservice.

The sidecar can be exchanged and updated
separately form the other components of the
service.

The sidecar components can exchange
messages with each other over a service
plane.

Service plane

The service plane can be integrated by a service
mesh, where all supporting services for the
microservices are managed in central manner (see
slide 58).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 53/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice Sidecar communication

Data Base

Service

Module

Module

Module

Module

Sidecar

Monitoring

Backup

Logging

Supporting
Service

Data Base

Service

Module

Module

Module

Module

Sidecar

Monitoring

Backup

Logging

Supporting
ServiceSe

rv
ic

e
 P

la
ne

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 54/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice – API-Gateway

Client

Service A API

Service B API

api/other/a1

api/other/a2

api/servicea1/a1

api/servicea2/a2

Service A1

Service A2

Other
Service

API-Call

API-Gateway

API-Gateway
The API-Gateway forms a central request-response-based access point to the backend services.
The more such backend services are created, the more likely it is that frontend services will not
have to interact with dozens or hundreds of individual services, but will instead have a central
access point.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 55/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice – API-Gateway

By introducing an API gateway that forms a boundary to the backend systems (and is therefore
sometimes called an “edge service”) and serves as a central access point, various orchestration
disadvantages in microservice architectures (but also serverless architectures) can be compensated for.
The disadvantages of service architectures include many communication connections for clients.
Overall, the complexity of a complete system increases with the number of APIs provided.

The API-Gateway has the following requirements:
Cross-functional solutions should not have to be implemented individually for each backend
service, but should be implemented uniformly across all services.

The aim is to monitor the use of APIs using analysis and monitoring tools in order to determine
the purposes for which the APIs provided are used.

If APIs are to be monetized, a connection to a billing system must be established.

In service-of-services architectures, dozens of upstream services may need to be queried to
respond to individual requests. New API services will be added or removed over time.
Nevertheless, all these changes should not filter through to the client, which should always find
all services in their usual place.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 56/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice – API-Gateway Location

Service

Service

Service
Web

Application
Firewall

Front end

Front end

Front end

Service Mesh

Container Platform

Load BalancerUser

API-
Gateway

API-
Gateway

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 57/66

Software Architectures Distributed Systems Distributed Architectures Summary

Microservice – Service Mesh

Service

Service

Service

Service

Service

Service

Service Mesh

Service

Service

Service

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Si
de

ca
r

Service Mesh
The service mesh is a console for developers
to gain access to the services.

Each service is a node in the service mesh.

The operational coupling (logging and
monitoring) can be controlled globally.

Service discovery is an important part of
microservice architectures.

Service Discovery
All requests are sent to the service discovery tool
(e.g. Consul). The tool monitors the requests and
starts new instances and services on request
making this architecture scalable and each service
elastic.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 58/66

Software Architectures Distributed Systems Distributed Architectures Summary

Summary on Microservice Architecture

Benefits
Protocol-awareness – Each service needs to know how to call the other services
⇒ No Interation Hub!

The communication between services is standardized REST/HTTP, gRPC,
Message-Queues. . .⇒ Service Discovery!

Heterogeneity – Each service can implement a different technology stack
(polyglot).

The used programming languages, frameworks, storage technologies can differ in
every service.

Interoperability – Each service is communicating with other services over the
network ⇒ No proprietary communication!

Drawback

Complexity!!!
Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 59/66

Software Architectures Distributed Systems Distributed Architectures Summary

Serverless Architecture

In addition to microservice architectures, so-called serverless architectures are
increasingly so-called serverless architectures. This is an architectural approach that
ultimately takes up the microservice architecture approach and takes into account
special features that resulting from the FaaS programming model. FaaS platforms
are merely event processing systems (see slide set 3). Events can be sent via
HTTP, for example, or received from other event event sources (from cloud
infrastructures). The platform then determines which functions are registered for an
event, sends the event to the function instance and waits for a response.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 60/66

Software Architectures Distributed Systems Distributed Architectures Summary

Serverless Architecture

func()
Code

Code

Event
Queue Dispatcher

Worker

func()
Code

Code

Worker

...

UI

API Gateway

Cloud Event
Sources

MasterEdge

Figure: Serverless Architecture

Serverless Architecture
Edge – API-Gateway or
events triggering a function
call.
Event Queue – Ordering and
managing the requests from
the sources.
Dispatcher – Managing the
spawn of workers in the
platform.
Workers – Functions
executing the code and
returning the results.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 61/66

Software Architectures Distributed Systems Distributed Architectures Summary

Properties of Serverless Architectures

Serverless architectures have the following properties:
Serverless computing is designed to be stateless ⇒ No states are stored in
functions between calls!
If functions do not have to process event , no resources (processor, main memory)
are allocated to them. ⇒ Therefore the term serverless!
Pricing is based on the pay-as-you-go principle based on the amount of resources
actually consumed (processor, main memory), required to process events.

Summary
Serverless computing therefore refers to a cloud computing model in which cloud
providers allocate resources on an event-driven basis. Developers of serverless
applications therefore do not have to worry about capacity planning, configuration,
management, maintenance, operation or scaling of containers, VMs or physical servers
(hence the name serverless!).

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 62/66

Software Architectures Distributed Systems Distributed Architectures Summary

Summary

We have looked at Software Architectures and the SOLID principles.
We have looked at the definition of distributed systems and their characteristics.
We have looked at the fallacies of distributed systems and their importance for
software architectures.
We have looked at different software architectures like the three-tier,
Service-oriented and microservice architecture.
We have looked at serverless architectures and the underlying programming
paradigm.

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 63/66

Software Architectures Distributed Systems Distributed Architectures Summary

Outlook

1st part: Introduction
2nd part: Technological foundations
3rd part: Service models, deployment models
4th part: Adoption and strategy
5th part: Architectures and applications ⇐= This slide set
6th part: Cloud-Native applications
7th part: Current and future trends

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 64/66

Software Architectures Distributed Systems Distributed Architectures Summary

6th part: Cloud-Native applications

Topics:
Cloud-Native Applications
Components of Cloud-Native Computing
Architectures and Patterns in Cloud-Native Computing
Benefits and Challenges in Cloud-Native Computing
Summary

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 65/66

Software Architectures Distributed Systems Distributed Architectures Summary

Thank You
For Your Attention!

Henry-Norbert Cocos, M.Sc
Frankfurt University of Applied Sciences
Room 1-230
� +49 69 1533-2699
B cocos@fb2.fra-uas.de
m www.henrycocos.de

Henry-Norbert Cocos | Winter term 2024 | Slide set 5 | Cloud Computing 66/66

www.henrycocos.de

