arc®

Template

January 2023

About arc42
arc42, the template for documentation of software and system architecture.
Template Version 8.2 EN. (based upon AsciiDoc version), January 2023

Created, maintained and © by Dr. Peter Hruschka, Dr. Gernot Starke and
contributors. See https://arc42.org.

This version of the template contains some help and explanations. It is used
for familiarization with arc42 and the understanding of the concepts. For
documentation of your own system you use better the plain version.

Introduction and Goals

Describes the relevant requirements and the driving forces that software architects
and development team must consider. These include

o underlying business goals,

o essential features,

o essential functional requirements,

o quality goals for the architecture and

o relevant stakeholders and their expectations

https://arc42.org

Requirements Overview
Contents

Short description of the functional requirements, driving forces, extract (or
abstract) of requirements. Link to (hopefully existing) requirements documents
(with version number and information where to find it).

Motivation

From the point of view of the end users a system is created or modified to
improve support of a business activity and/or improve the quality.

Form

Short textual description, probably in tabular use-case format. If requirements
documents exist this overview should refer to these documents.

Keep these excerpts as short as possible. Balance readability of this document
with potential redundancy w.r.t to requirements documents.

See Introduction and Goals in the arc42 documentation.

Quality Goals
Contents

The top three (max five) quality goals for the architecture whose fulfillment
is of highest importance to the major stakeholders. We really mean quality
goals for the architecture. Don’t confuse them with project goals. They are not
necessarily identical.

Consider this overview of potential topics (based upon the ISO 25010 standard):

Functional

Suitability

System provides functions
that meet stated or implied
needs.

Reliability

System can maintain a
specified level of
performance when used
under specified conditions.

Security

Protection of system items
from accidental or
malicious access, use,
modification, destruction,
or disclosure.

Maintainability

System can be modified,
corrected, adapted or
improved due to changes
in environment or
requirements.

Performance
Efficiency

System provides
appropriate performance,
relative to the amount of

resources used.

Usability

System can be
understood, leamed, used
and is aftractive to users.

Compatibility

Two or more systems can
exchange information
while sharing the same
environment.

Transferability

System can be transferred
from one environment to
another.

IS0 25010 Quality Characteristics

Motivation

You should know the quality goals of your most important stakeholders, since
they will influence fundamental architectural decisions. Make sure to be very

https://docs.arc42.org/section-1/

concrete about these qualities, avoid buzzwords. If you as an architect do not
know how the quality of your work will be judged. ..

Form

A table with quality goals and concrete scenarios, ordered by priorities

Stakeholders

Contents

Explicit overview of stakeholders of the system, i.e. all person, roles or organiza-
tions that

e should know the architecture

¢ have to be convinced of the architecture

e have to work with the architecture or with code

¢ need the documentation of the architecture for their work

¢ have to come up with decisions about the system or its development
Motivation

You should know all parties involved in development of the system or affected
by the system. Otherwise, you may get nasty surprises later in the development
process. These stakeholders determine the extent and the level of detail of your
work and its results.

Form

Table with role names, person names, and their expectations with respect to the
architecture and its documentation.

Role/Name Contact Expectations
<Role-1> <Contact-1> <Fzpectation-1>
<Role-2> <Contact-2> <FEzxpectation-2>

Architecture Constraints

Contents

Any requirement that constraints software architects in their freedom of design
and implementation decisions or decision about the development process. These
constraints sometimes go beyond individual systems and are valid for whole
organizations and companies.

Motivation

Architects should know exactly where they are free in their design decisions and
where they must adhere to constraints. Constraints must always be dealt with;
they may be negotiable, though.

Form

Simple tables of constraints with explanations. If needed you can subdivide
them into technical constraints, organizational and political constraints and
conventions (e.g. programming or versioning guidelines, documentation or
naming conventions)

See Architecture Constraints in the arc42 documentation.

System Scope and Context

Contents

System scope and context - as the name suggests - delimits your system (i.e.
your scope) from all its communication partners (neighboring systems and users,
i.e. the context of your system). It thereby specifies the external interfaces.

If necessary, differentiate the business context (domain specific inputs and
outputs) from the technical context (channels, protocols, hardware).

Motivation

The domain interfaces and technical interfaces to communication partners are
among your system’s most critical aspects. Make sure that you completely
understand them.

Form
Various options:
o Context diagrams
e Lists of communication partners and their interfaces.

See Context and Scope in the arc42 documentation.

Business Context
Contents

Specification of all communication partners (users, IT-systems, ...) with
explanations of domain specific inputs and outputs or interfaces. Optionally you
can add domain specific formats or communication protocols.

Motivation

All stakeholders should understand which data are exchanged with the environ-
ment of the system.

https://docs.arc42.org/section-2/
https://docs.arc42.org/section-3/

Form

All kinds of diagrams that show the system as a black box and specify the
domain interfaces to communication partners.

Alternatively (or additionally) you can use a table. The title of the table is the
name of your system, the three columns contain the name of the communication
partner, the inputs, and the outputs.

<Diagram or Table>

<optionally: Explanation of external domain interfaces>

Technical Context
Contents

Technical interfaces (channels and transmission media) linking your system to
its environment. In addition a mapping of domain specific input/output to the
channels, i.e. an explanation which I/O uses which channel.

Motivation

Many stakeholders make architectural decision based on the technical interfaces
between the system and its context. Especially infrastructure or hardware
designers decide these technical interfaces.

Form

E.g. UML deployment diagram describing channels to neighboring systems,
together with a mapping table showing the relationships between channels and
input/output.

<Diagram or Table>
<optionally: Explanation of technical interfaces>

<Mapping Input/Output to Channels>

Solution Strategy

Contents

A short summary and explanation of the fundamental decisions and solution
strategies, that shape system architecture. It includes

¢ technology decisions

o decisions about the top-level decomposition of the system, e.g. usage of an
architectural pattern or design pattern

o decisions on how to achieve key quality goals

o relevant organizational decisions, e.g. selecting a development process or
delegating certain tasks to third parties.

Motivation

These decisions form the cornerstones for your architecture. They are the
foundation for many other detailed decisions or implementation rules.

Form
Keep the explanations of such key decisions short.

Motivate what was decided and why it was decided that way, based upon problem
statement, quality goals and key constraints. Refer to details in the following
sections.

See Solution Strategy in the arc42 documentation.

Building Block View

Content

The building block view shows the static decomposition of the system into
building blocks (modules, components, subsystems, classes, interfaces, packages,
libraries, frameworks, layers, partitions, tiers, functions, macros, operations, data
structures, ...) as well as their dependencies (relationships, associations, . ..)

This view is mandatory for every architecture documentation. In analogy to a
house this is the floor plan.

Motivation

Maintain an overview of your source code by making its structure understandable
through abstraction.

This allows you to communicate with your stakeholder on an abstract level
without disclosing implementation details.

Form

The building block view is a hierarchical collection of black boxes and white
boxes (see figure below) and their descriptions.

https://docs.arc42.org/section-4/

p

=~

Neighbor
System 1
N\
__ | System
X [T--= > Neighbor
- - System 2
Administrator

\ ‘ N J

Scope & Context

, refined .
' (as new diagram)

— Whitebox ;
E o _[6}+[D]

> ~4o 7
g s

______ ? A ==~ $ L -~ o
T B
Administrator S
refined : ;
(as new diagram) $ P refined
Al N A) (as new diagram)
. M /

o) Whitebox A . Whitebox B

o > A2 ||
B A1 , el S| B2

> <~
-7 ¢ B1 ‘\
Neighbor o \\
System
1 v

Administrator %

Level 1 is the white box description of the overall system together with black
box descriptions of all contained building blocks.

Level 2 zooms into some building blocks of level 1. Thus it contains the white
box description of selected building blocks of level 1, together with black box
descriptions of their internal building blocks.

Level 3 zooms into selected building blocks of level 2, and so on.

See Building Block View in the arc42 documentation.

https://docs.arc42.org/section-5/

Whitebox Overall System

Here you describe the decomposition of the overall system using the following
white box template. It contains

e an overview diagram
e a motivation for the decomposition

¢ black box descriptions of the contained building blocks. For these we offer
you alternatives:

— use one table for a short and pragmatic overview of all contained
building blocks and their interfaces

— use a list of black box descriptions of the building blocks according to
the black box template (see below). Depending on your choice of tool
this list could be sub-chapters (in text files), sub-pages (in a Wiki) or
nested elements (in a modeling tool).

« (optional:) important interfaces, that are not explained in the black box
templates of a building block, but are very important for understanding the
white box. Since there are so many ways to specify interfaces why do not
provide a specific template for them. In the worst case you have to specify
and describe syntax, semantics, protocols, error handling, restrictions,
versions, qualities, necessary compatibilities and many things more. In the
best case you will get away with examples or simple signatures.

<Overview Diagram>
Motivation <tezt explanation>

Contained Building Blocks <Description of contained building block (black
bozes)>

Important Interfaces <Description of important interfaces>
Insert your explanations of black boxes from level 1:

If you use tabular form you will only describe your black boxes with name and
responsibility according to the following schema:

Name Responsibility
<black box 1> <Text>
<black box 2> <Text>

If you use a list of black box descriptions then you fill in a separate black box
template for every important building block . Its headline is the name of the
black box.

<Name black box 1>
Here you describe <black box 1> according the the following black box template:
o Purpose/Responsibility

o Interface(s), when they are not extracted as separate paragraphs. This
interfaces may include qualities and performance characteristics.

e (Optional) Quality-/Performance characteristics of the black box,
e.g.availability, run time behavior,

 (Optional) directory/file location
 (Optional) Fulfilled requirements (if you need traceability to requirements).
e (Optional) Open issues/problems /risks

<Purpose/Responsibility>

<Interface(s)>

<(Optional) Quality/Performance Characteristics>

<(Optional) Directory/File Location>

<(Optional) Fulfilled Requirements>

<(optional) Open Issues/Problems/Risks>

<Name black box 2>

<black box template>

<Name black box n>

<black box template>

<Name interface 1>

<Name interface m>

Level 2

Here you can specify the inner structure of (some) building blocks from level 1
as white boxes.

You have to decide which building blocks of your system are important enough
to justify such a detailed description. Please prefer relevance over completeness.
Specify important, surprising, risky, complex or volatile building blocks. Leave
out normal, simple, boring or standardized parts of your system

White Box <building block 1>
...describes the internal structure of building block 1.

<white box template>

White Box <building block 2>

<white box template>

White Box <building block m>

<white box template>

Level 3

Here you can specify the inner structure of (some) building blocks from level 2
as white boxes.

When you need more detailed levels of your architecture please copy this part of
arc42 for additional levels.

White Box <_ building block x.1_ >

Specifies the internal structure of building block z.1.

<white box template>

White Box <_ building block x.2_ >

<white box template>

White Box <_ building block y.1_ >

<white box template>

Runtime View

Contents

The runtime view describes concrete behavior and interactions of the system’s
building blocks in form of scenarios from the following areas:

o important use cases or features: how do building blocks execute them?

o interactions at critical external interfaces: how do building blocks cooperate
with users and neighboring systems?

e operation and administration: launch, start-up, stop

10

e error and exception scenarios

Remark: The main criterion for the choice of possible scenarios (sequences,
workflows) is their architectural relevance. It is not important to describe
a large number of scenarios. You should rather document a representative
selection.

Motivation

You should understand how (instances of) building blocks of your system perform
their job and communicate at runtime. You will mainly capture scenarios in
your documentation to communicate your architecture to stakeholders that are
less willing or able to read and understand the static models (building block
view, deployment view).

Form
There are many notations for describing scenarios, e.g.
o numbered list of steps (in natural language)
o activity diagrams or flow charts
e sequence diagrams
o BPMN or EPCs (event process chains)
o state machines

See Runtime View in the arc42 documentation.

<Runtime Scenario 1>
o <insert runtime diagram or textual description of the scenario>

o <insert description of the notable aspects of the interactions between the
building block instances depicted in this diagram.>

<Runtime Scenario 2>

<Runtime Scenario n>

Deployment View

Content

The deployment view describes:

11

https://docs.arc42.org/section-6/

1. technical infrastructure used to execute your system, with infrastructure
elements like geographical locations, environments, computers, processors,
channels and net topologies as well as other infrastructure elements and

2. mapping of (software) building blocks to that infrastructure elements.

Often systems are executed in different environments, e.g. development envi-
ronment, test environment, production environment. In such cases you should
document all relevant environments.

Especially document a deployment view if your software is executed as distributed
system with more than one computer, processor, server or container or when
you design and construct your own hardware processors and chips.

From a software perspective it is sufficient to capture only those elements of an
infrastructure that are needed to show a deployment of your building blocks.
Hardware architects can go beyond that and describe an infrastructure to any
level of detail they need to capture.

Motivation

Software does not run without hardware. This underlying infrastructure can
and will influence a system and/or some cross-cutting concepts. Therefore, there
is a need to know the infrastructure.

Maybe a highest level deployment diagram is already contained in section 3.2.
as technical context with your own infrastructure as ONE black box. In this
section one can zoom into this black box using additional deployment diagrams:

e UML offers deployment diagrams to express that view. Use it, probably
with nested diagrams, when your infrastructure is more complex.

o When your (hardware) stakeholders prefer other kinds of diagrams rather
than a deployment diagram, let them use any kind that is able to show
nodes and channels of the infrastructure.

See Deployment View in the arc42 documentation.

Infrastructure Level 1
Describe (usually in a combination of diagrams, tables, and text):

o distribution of a system to multiple locations, environments, computers,
processors, .., as well as physical connections between them

e important justifications or motivations for this deployment structure
¢ quality and/or performance features of this infrastructure
o mapping of software artifacts to elements of this infrastructure

For multiple environments or alternative deployments please copy and adapt
this section of arc42 for all relevant environments.

12

https://docs.arc42.org/section-7/

< Overview Diagram>
Motivation <explanation in text form>
Quality and/or Performance Features <explanation in text form>

Mapping of Building Blocks to Infrastructure <description of the map-
ping>

Infrastructure Level 2

Here you can include the internal structure of (some) infrastructure elements
from level 1.

Please copy the structure from level 1 for each selected element.

<Infrastructure Element 1>

<diagram + ezplanation>

<Infrastructure Element 2>

<diagram + explanation>

<Infrastructure Element n>

<diagram + explanation>

Cross-cutting Concepts

Content

This section describes overall, principal regulations and solution ideas that are
relevant in multiple parts (= cross-cutting) of your system. Such concepts are
often related to multiple building blocks. They can include many different topics,
such as

o models, especially domain models
o architecture or design patterns
o rules for using specific technology

« principal, often technical decisions of an overarching (= cross-cutting)
nature

e implementation rules

13

Motivation

Concepts form the basis for conceptual integrity (consistency, homogeneity) of
the architecture. Thus, they are an important contribution to achieve inner
qualities of your system.

Some of these concepts cannot be assigned to individual building blocks, e.g.
security or safety.

Form

The form can be varied:

concept papers with any kind of structure

cross-cutting model excerpts or scenarios using notations of the architecture
views

sample implementations, especially for technical concepts

reference to typical usage of standard frameworks (e.g. using Hibernate
for object /relational mapping)

Structure

A potential (but not mandatory) structure for this section could be:

Domain concepts

User Experience concepts (UX)
Safety and security concepts
Architecture and design patterns
"Under-the-hood"

development concepts

operational concepts

Note: it might be difficult to assign individual concepts to one specific topic on
this list.

14

Persistency

I‘ Process control
| e
| Transaction handiing

—_—
Domain Concepts \ | session handiing

| Communication and integration
—_—

[! Exception- and zrror handling
Architecture and Design \ ,+ Under-the-hood
Patterns _\ \ / L || _Parallelization / Threading
\ 7 e
4 / | Plausibility chacks and validation
N ‘/ EET—
A\ | / | Business rules
User intarface X
\ | Batch
Ergonomics |) i It
— :(User Experience (UX) —] Cross(uttlng | Reporting
Internationalizationitgn | Concepts \
Securiy // / \ Administration
~ . | Y ——
_ o |“ \ f
Safety K’I Security & Safety }»-"’ i \ ‘I/m
\ |f

Disaster-Recovery

Scalapility

| Clustering
—

Code generation | [) /
| Development | |\ Monitoring, Logging
Migraion | p— - f———
— P | High evailanility
—_—

Configurasility |
—_—

."I‘ ~ (i/

} / . Operation | |

Build, Test, Deploy / - X
—_— / Concepts

See Concepts in the arc42 documentation.

<Concept 1>

<ezplanation>

<Concept 2>

<ezplanation>

<Concept n>

<ezplanation>

Architecture Decisions

Contents

Important, expensive, large scale or risky architecture decisions including ra-
b b)

tionales. With "decisions" we mean selecting one alternative based on given

criteria.

Please use your judgement to decide whether an architectural decision should
be documented here in this central section or whether you better document it
locally (e.g. within the white box template of one building block).

Avoid redundancy. Refer to section 4, where you already captured the most
important decisions of your architecture.

15

https://docs.arc42.org/section-8/

Motivation

Stakeholders of your system should be able to comprehend and retrace your
decisions.

Form

Various options:
o ADR (Documenting Architecture Decisions) for every important decision
e List or table, ordered by importance and consequences or:
o more detailed in form of separate sections per decision

See Architecture Decisions in the arc42 documentation. There you will find links
and examples about ADR.

Quality Requirements

Content

This section contains all quality requirements as quality tree with scenarios. The
most important ones have already been described in section 1.2. (quality goals)

Here you can also capture quality requirements with lesser priority, which will
not create high risks when they are not fully achieved.

Motivation

Since quality requirements will have a lot of influence on architectural decisions
you should know for every stakeholder what is really important to them, concrete
and measurable.

See Quality Requirements in the arc42 documentation.

Quality Tree
Content

The quality tree (as defined in ATAM — Architecture Tradeoff Analysis Method)
with quality/evaluation scenarios as leafs.

Motivation

The tree structure with priorities provides an overview for a sometimes large
number of quality requirements.

Form
The quality tree is a high-level overview of the quality goals and requirements:

o tree-like refinement of the term "quality". Use "quality" or "usefulness" as
a root

16

https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://docs.arc42.org/section-9/
https://docs.arc42.org/section-10/

¢ a mind map with quality categories as main branches

In any case the tree should include links to the scenarios of the following section.

Quality Scenarios
Contents

Concretization of (sometimes vague or implicit) quality requirements using
(quality) scenarios.

These scenarios describe what should happen when a stimulus arrives at the
system.

For architects, two kinds of scenarios are important:

o Usage scenarios (also called application scenarios or use case scenarios)
describe the system’s runtime reaction to a certain stimulus. This also
includes scenarios that describe the system’s efficiency or performance.
Example: The system reacts to a user’s request within one second.

¢ Change scenarios describe a modification of the system or of its immedi-
ate environment. Example: Additional functionality is implemented or
requirements for a quality attribute change.

Motivation

Scenarios make quality requirements concrete and allow to more easily measure
or decide whether they are fulfilled.

Especially when you want to assess your architecture using methods like ATAM
you need to describe your quality goals (from section 1.2) more precisely down
to a level of scenarios that can be discussed and evaluated.

Form

Tabular or free form text.

Risks and Technical Debts

Contents
A list of identified technical risks or technical debts, ordered by priority
Motivation

“Risk management is project management for grown-ups” (Tim Lister, Atlantic
Systems Guild.)

This should be your motto for systematic detection and evaluation of risks
and technical debts in the architecture, which will be needed by management
stakeholders (e.g. project managers, product owners) as part of the overall risk
analysis and measurement planning.

17

Form

List of risks and/or technical debts, probably including suggested measures to
minimize, mitigate or avoid risks or reduce technical debts.

See Risks and Technical Debt in the arc42 documentation.

Glossary

Contents

The most important domain and technical terms that your stakeholders use
when discussing the system.

You can also see the glossary as source for translations if you work in multi-
language teams.

Motivation
You should clearly define your terms, so that all stakeholders
¢ have an identical understanding of these terms
e do not use synonyms and homonyms
A table with columns <Term> and <Definition>.
Potentially more columns in case you need translations.

See Glossary in the arc42 documentation.

Term Definition
<Term-1> <definition-1>
<Term-2> <definition-2>

18

https://docs.arc42.org/section-11/
https://docs.arc42.org/section-12/

	
	Introduction and Goals
	Requirements Overview
	Quality Goals
	Stakeholders

	Architecture Constraints
	System Scope and Context
	Business Context
	Technical Context

	Solution Strategy
	Building Block View
	Whitebox Overall System
	<Name black box 1>
	<Name black box 2>
	<Name black box n>
	<Name interface 1>
	<Name interface m>

	Level 2
	White Box <building block 1>
	White Box <building block 2>
	White Box <building block m>

	Level 3
	White Box <_building block x.1_>
	White Box <_building block x.2_>
	White Box <_building block y.1_>

	Runtime View
	<Runtime Scenario 1>
	<Runtime Scenario 2>
	…
	<Runtime Scenario n>

	Deployment View
	Infrastructure Level 1
	Infrastructure Level 2
	<Infrastructure Element 1>
	<Infrastructure Element 2>
	<Infrastructure Element n>

	Cross-cutting Concepts
	<Concept 1>
	<Concept 2>
	<Concept n>

	Architecture Decisions
	Quality Requirements
	Quality Tree
	Quality Scenarios

	Risks and Technical Debts
	Glossary

