Fundamentals

Cloud Computing

Organisational information, Client-Server, Fundamentals, Laws and Limitations, Parallel Computers Slide set 1

> Henry-Norbert Cocos cocos@fb2.fra-uas.de

Computer Science Department of Computer Science and Engineering Frankfurt University of Applied Sciences

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

3 Client-Server

Organizational Information

- Website:
 - 🏶 www.henrycocos.de
- E-Mail:
 - 🖂 cocos@fb2.fra-uas.de
- Office:
 - Room 1-230
- Consultation:
 - Best via E-Mail!
- Course material:
 - Lecture notes (PDF slides) and semester project related information can be found at the course website

!!! ATTENTION !!!

- Beginning WS2021, the cloud computing course does not have a written exam anymore!
- Your grade will depend 100% on your work and the results in the semester project (see the course web page for more information)

Parallel Computers

Generations of Computer Systems

GenerationTimeframeTechnological progress0until 1940(Electro-)mechanical calculating machines11940 – 1955Elelectron tubes, relays, jack panels21955 – 1965Transistors, batch processing31965 – 1980Integrated circuits, time sharing41980 – 2000Very large-scale integration, Microprocessors, PCs/Workstations52000 until ?Distributed systems, the network is the computer, Virtualization

Quote from the magazine Popular Mechanics (1949)

"In the future, computers may weigh no more than 1.5 tonnes."

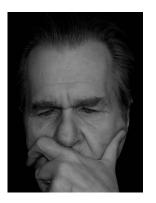
Parallel Computers

5.Generation (2000 – ????)

- Some keywords from the 5th generation:
 - The network is the computer
 - Distributed systems \implies Cluster-, Cloud-, Grid-, P2P-Computing
 - Multicore processors and parallel applications
 - Virtualization \implies VMware, XEN, KVM, Docker...
 - OpenSource \implies Linux, BSD,...
 - Communication everywhere \Longrightarrow mobile systems, pervasive computing
 - New ways of working ⇒ e-Science, e-Learning, e-Business,...
 - Services \implies Service-oriented architectures (SOA), Web Services
 - $\bullet~$ Resources are requested and rent when needed \Longrightarrow on demand
 - Artificial Intelligence (AI)

Many topics of the 5th generation will by discussed in this course

- Keywords for later generations:
 - Quantum computers (probably 7th or 8th generation)


Brave new World?

Client-Server

Fundamentals

Brave new World?

Image Source: pixabay.com (CC0)

- Brings the concept *the network is the computer* only benefits?
- Who decides, which applications we are allowed to use in the future?
- Who decides, which books we ware allowed to read in the future?
- How much freedom and self-determination do we want and need to give up?

• Some examples. . .

Brave new World?

Client-Server

Fundamentals

Apple iPhone

Image Source: pixabay.com (CC0)

- No free software allowed
- Apple regulates which applications are allowed to run on the iPhone
- All media files contain DRM technologies (digital rights management)
- DRM-free formats like Ogg Vorbis or MP3 cannot be used
- Reasons for the exclusion of applications is somtimes difficult to understand and always without warning
- Apple can erase applications, which are installed on the devices

Parallel Computers

← → C 🛈 www.telegraph.co.uk/technology/apple/7290849/Apple-removes-5000-apps-from-App-Store.html

Apple removes 5,000 apps from App Store

Apple has banned thousands of apps from the App Store, blaming inappropriate content

Developers report that Apple has started an App Store crackdown against apps featuring 'overtly sexual' content

By Claudine Beaumont, Technology Editor 11:07AM GMT 22 Feb 2010

Comment

Apple has removed around 5,000 apps from its App Store, including some that it claims feature "overtly sexual" content.

Dozens of developers received a message from Apple stating that the company was refining the guidelines under which the App Store

Parallel Computers

← → C 📔 Sicher | https://www.cnet.com/news/commodore-64-iphone-emulator-approved-yanked/

Apple approves controversial Commodore 64 emulator only to remove it days later, after users find a work-around to access the BASIC interpreter.

BY DAVID MARTIN / SEPTEMBER 8, 2009 4:38 PM PDT

The Commodore 64 emulator application for iPhone, <u>previously</u> rejected by Apple, was approved for availability in the App Store over the weekend, only to get pulled days later.

Apple blocked the sale of the iPhone app, dubbed C64, from the store on Tuesday without explaining why. according to developer <u>Manomio</u>. And while Apple was not immediately available for comment regarding the C64 app, which is designed to enable users to play classic Commodore 64 games and run applications, Manomio says it believes that the yanking is related to an <u>available work-around</u> that enables users to activate the Commodore BASIC interpreter, a feature behind the application's initial App Store rejection.

Client-Server

Fundamentals

Parallel Computers

Google Android

← → C ■ Sicher | https://www.cnet.com/news/google-remotely-wipes-apps-off-android-phones/

Google remotely wipes apps off Android phones

Two "research" apps are deleted from Android phones for misrepresenting their purpose in Google's first use of remote app removal feature.

BY ELINOR MILLS / JUNE 25, 2010 2:39 PM PDT

Google has remotely removed two free apps from several hundred Android phones because the apps misrepresented their purpose and thus violated Android developer policies, according to a company spokesman.

This marks the first time Google has used the Remote Application Removal Feature that allows the company to delete apps for security reasons that have been installed through Android Market.

The apps were proof-of-concept programs designed to test the feasibility of distributing a program that could later be used to take control of the device in an attack, according to Jon Oberheide, the developer who wrote and distributed them.

Notifications

A Twilight Eclipse Preview	
Removed from your phone.	5:40 PM
A RootStrap	
Removed from your phone.	5:40 PM

☆

This screenshot shows the message Android Market sent to phones when it remotely removed Oberheide's apps.

Jon Oberheide

Client-Server

Fundamentals

Parallel Computers

C 🗧 🛈 googlemobile.blogspot.de/2011/03/update-on-android-market-security.html

An Update on Android Market Security

Saturday, March 5, 2011 | 10:08 PM

On Tuesday evening, the Android team was made aware of a number of malicious applications published to Android Market. Within minutes of becoming aware, we identified and removed the malicious applications. The applications took advantage of known vulnerabilities which don't affect Android versions 2.2.2 or higher. For affected devices, we believe that the only information the attacker(s) were able to gather was device-specific (IME/I/MS), unique codes which are used to identify mobile devices, and the version of Android running on your device). But given the nature of the exploits, the attacker(s) could access other data, which is why we've taken a number of steps to protect those who downloaded a malicious application:

- We removed the malicious applications from Android Market, suspended the associated developer accounts, and contacted law enforcement about the attack.
- We are remotely removing the malicious applications from affected devices. This remote application removal feature is one of many security controls the Android team can use to help protect users from malicious applications.
- 3. We are pushing an Android Market security update to all affected devices that undoes the exploits to prevent the attacker(s) from accessing any more information from affected devices. If your device has been affected, you will receive an email from android-market-support@google.com over the next 72 hours. You will also receive a notification on your device that "Android Market Security Tool March 2011" has been installed. You may also receive notification(s) on your device that an application has been removed. You are **not** required to take any action from there; the update will automatically undo the exploit. Within 24 hours of the exploit being undone, you will receive a second email.
- 4. We are adding a number of measures to help prevent additional malicious applications using similar exploits from being distributed through Android Market and are working with our partners to provide the fix for the underlying security issues.

Google Chrome OS

Releasing the Chromium OS open source project

11/19/2009 10:31:00 AM

In July we <u>announced</u> that we were working on Google Chrome OS, an open source operating system for people who spend most of their time on the web.

Today we are open-sourcing the project as Chromium OS. We are doing this early, a year before Google Chrome OS will be ready for users, because we are eager to engage with partners, the open source community and developers. As with the Google Chrome browser, development will be done in the open from this point on. This means the code is free, accessible to anyone and open for contributions. The Chromium OS project includes our current <u>code base, user</u> <u>interface experiments</u> and some initial <u>designs</u> for ongoing development. This is the initial sketch and we will color it in over the course of the next year.

We want to take this opportunity to explain why we're excited about the project and how it is a fundamentally different model of computing.

First, it's all about the web. All apps are web apps. The entire experience takes place within the browser and there are no conventional desktop applications. This means users do not have to deal with installing, managing and updating programs.

Amazon Kindle

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Image Source: pixabay.com (CC0)

- Books can only be read with devices which are registered to a common Amazon account
- Sharing books is impossible
- Amazon can deny access to already purchased books

Parallel Computers

← → C ③ www.nytimes.com/2009/07/18/technology/companies/18amazon.html

Amazon Erases Orwell Books From Kindle

By BRAD STONE Published: July 17, 2009

In <u>George Orwell</u>'s "1984," government censors erase all traces of news articles embarrassing to Big Brother by sending them down an incineration chute called the "memory hole."

On Friday, it was "1984" and another Orwell book, "Animal Farm," that were dropped down the memory hole — by <u>Amazon.com</u>.

In a move that <u>angered customers</u> and generated waves of online pique, <u>Amazon</u> remotely deleted some digital editions of the books from the <u>Kindle</u> devices of readers who had bought them.

An Amazon spokesman, Drew Herdener, said in an e-mail message that the books were added to the Kindle store by a company that did not have rights to them, using a self-service function. "When we were notified of this by the rights holder, we removed the illegal copies from our systems and from customers' devices, and refunded customers," he said.

Freedom vs. censorship

Brave new World?

Organisation

- Who decides in the future about censorship and freedom?
 - Politics?
 - https://en.wikipedia.org/wiki/Censorship
 - Industry?
 - https://en.wikipedia.org/wiki/Censorship_by_Apple

Fundamentals

- https://en.wikipedia.org/wiki/Censorship_by_Google
- https://en.wikipedia.org/wiki/Censorship_of_Twitter
- Population (customers/citizens)?

Client-Server

- https://en.wikipedia.org/wiki/Freedom_of_speech
- https://en.wikipedia.org/wiki/Political_freedom
- https://en.wikipedia.org/wiki/Artistic_freedom
- https://en.wikipedia.org/wiki/Intellectual_freedom

Parallel Computers

Client-Server

Fundamentals

Parallel Computers

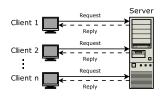
Interesting Article about this Topic: Parental Computing

The Cloud's My-Mom-Cleaned-My-Room Problem

SEP 26 2011, 12:50 PM ET | 9 39

Welcome to the era of parental computing, or how the cloud makes children of us all

When your mom cleans your room, it's a mixed bag. The clothes are in the drawers and the papers are straight, but you can't find anything and there is the distinct possibility that she found out what ver illegal (or at least immoral) material you had stashed away under the mattrees.


This is not a short reflection on my childhood (neither of my parents was the room-claiming type) but a metaphor for the set of we's acvices we call the cloud. We all know the feeling of logging into Facebook/Tumbh/Twitter/Heffix/Pandora/Gmil and realizing that the interface has changed. Maybe the company's internal testing says the new interface is better organized, but dang – wed gotten used to the last one and we liked it. Wew Twitter But Lihkold Off writter' we carry.

Névea lawaya bean dapandant on software providers to create the digital spaces we inhabit, but when your email and documents and music are in the cloud, you're giving up the lock on the door and allowing changes to be made on the schedule of the parent. He or she may clean up or buy you a new desk. He or she may take away the car or decide you can't do something you think you should be able to.

http://www.theatlantic.com/technology/archive/2011/09/the-clouds-my-mom-cleaned-my-room-problem/245648/

Client-Server

- A client-server system includes:
 - one or more **clients** which use the services of the server and accesses data, stored at the server (\implies consumers)
 - a server, which provides services and/or data (\Longrightarrow producer)
- The connection establishment is initiated by the clients
- Communication works according to a protocol

- A client sends a request to the server responds with a reply
- The client-server architecture consists of 2 layers and is called two-tier model (tier = layer)

Tasks in the Client-Server Model

Brave new World?

Organisation

• For a distributed application, that is based on the client-server architecture, 5 tasks can be separated from each other:

Fundamentals

• Display (graphical) user interface

Client-Server

- Calculation of the (graphical) user interface
- Data processing
- Data management
- Data storage
- The distribution of the tasks to clients and server determines the client types
- According to their areas of responsibility, 4 types of clients exist:
 - Text-/X-Terminals
 - 2 Thin/Zero Clients
 - Applet Clients
 - 4 Fat Clients

Parallel Computers

Four Types of Clients in the Client-Server Model

Client-Server

• X-Terminal or Text-Terminal

Brave new World?

• Only display the (graphical) user interface and transfer the user interaction to the server

Fundamentals

• Calculation of the (graphical) user interface, data processing and data storage, data management are tasks of the server

• Thin Clients or Zero Clients

• Calculate and display the graphical user interface

• Applet Clients or Network Computers

- Calculate and display the graphical user interface and do a part of the data processing
- The clients process the applications (applets) themselves
- Fat Clients

Organisation

• Only data management and data storage are located on the (file or database) server

Parallel Computers

Brave new World?

Client-Server

Fundamentals

Parallel Computers

(Text-)Terminal: WYSE WY-50 (early 1990s)

Image source: Google image search

Brave new World?

Client-Server

Fundamentals

Parallel Computers

(X-)Terminal: NCD 88K (mid-1990s)

Image source: http://en.wikipedia.org/wiki/X_terminal and http://www.geekdot.com/uploads/images/m88k/NCD17c/NCD88k_KDE.jpg

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Network Computer: SUN JavaStation (1996 – 2000)

Image source: Google image search

22/67

Client-Server

Fundamentals

Parallel Computers

Fat Clients: Available everywhere

Image source: Google image search

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

 $\underset{000}{\text{Organisation}}$

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Thin Clients

Image source: HP

Brave new World?

Client-Server

Fundamentals

Parallel Computers

More Thin Clients

Forschugnsförderung	MPI HP MicroServer Ge	n8 💼 Raspberry Pi 💼 Div	erses 🖿 Escrima 🖿 Haus	Cloud	
LIGEL	GRÜNDE FÜR IGEL P	RODUKTE LÖSUNGEN KUM	IDEN SUPPORT PARTNER	VERANSTALTUNGEN KOSTEI	NLOS TESTEN DOWNLOAD
	Liner.				
	UD Pocket Pool-Zugriff auf VDI - immer und überall	UD2 Office-Anwendungen HD-Videostreaming	UD3 HD-Videostreaming Ultra HD 4K-Inhalt Office-Anwendungen	UD6 CAD- und 3D- Videokonstruktion UC mit hoher Auflösung (720p)	UD9 CAD- und 3D- Videokonstruktion UC mit hoher Auflösung (720p)
CPU	Erfordert X86 64-Bit- Unterstützung	Intel Atom E3815 1,46 GHz (Single-Core)	AMD Steppe Eagle GX- 424CC 2.4 GHz (Quad-Core)	Intel Celeron J1900 1,99- 2,42 GHz (Quad-Core)	Intel Celeron J1900 1,99- 2,42 GHz (Quad-Core)
Stromverbrauch (Leerlauf Standby)		5 W 0,6 W	4.7 W 0.42 W	8 W < 0.9 W	26 W < 2.5 W
Flash (SATA SSD)	8 GB	4 GB	4GB (LX) 32GB (W10)	4GB (LX) 32GB (W10)	4 GB

Advantages and Drawbacks of Thin Clients over Desktops

- Advantages of Thin Clients
 - Low acquisition costs (approx \in 500)
 - Reduced power consumption (a few watts) \Longrightarrow reduced operating costs
 - Reduced footprint (little space consumption)
 - Reduced noise, because no hard drive and sometimes fanless
 - Central storage of data is more efficient and more secure
 - Reduced resource consumption because of virtualization on the server
 - Reduced effort (cost) for administration
- Drawbacks of Thin Clients
 - No 3D graphics performance
 - Limited extensibility
 - Users fear storing their data outside of their PC (outside of their own sphere of influence)
 - Server is a single point of failure and eventually a bottleneck

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Linux and Windows CE with 3 Watt (flush-mounted)

Image source: Google image search and www.instant-axess.co.uk

Jack PC Modelle

EFI mit Win CE / LXJ mit Linux

Model	CPU	Equiv. x86	Flash/ RAM	Video Memory	Legacy Ports (Serial/Parallel)	USB Ports	Audio Support	Max Resolution
EFI-7800	AMD Au 1550 500 MHz RISC	1.2 GHz	256/128	8 MB (Analog)	N	4	Y	1600x1200 pixels 16 M (24 bit) colors
EFI-7900 LXJ-2311	AMD Au 1550 500 MHz RISC	1.2 GHz	256/128	8 MB (DVI)	N	4	Y	1600x1200 pixels 16 M (24 bit) colors

Different Client-Server Scenarios (1/2)

Brave new World?

Organisation

• Company X runs 500 computer workplaces

Client-Server

000

 Calculate the electricity costs per year (including the leap year) for 24/7 operation when the electricity price is 0,35 €/kWh.

Fundamentals

- Scenario 1: Fat clients (PC)
 - Electrical power rating per PC: 450 watts
 - Electrical power rating per screen: 80 watts
- Electricity costs per year for 500 PCs with screens:

$$0.53 \text{ kW} * 24 \frac{\text{h}}{\text{Day}} * 365.25 \frac{\text{Day}}{\text{Year}} * 0.35 \frac{\in}{\text{kWh}} * 500 = 813,046.5 \frac{\in}{\text{Year}}$$

Parallel Computers

Different Client-Server Scenarios (1/2)

Organisation

• Scenario 2: Thin clients (PC)

- Electrical power rating per thin client: 30 watts
- Electrical power rating per screen: 80 watts
- Electrical power rating per server blade: 600 watts
- Each server blade has enough resources to interact with 30 thin clients

Electricity costs per year (including the leap year) for 500 thin clients with screens:

$$0.11 \text{ kW} * 24 \frac{\text{h}}{\text{Day}} * 365.25 \frac{\text{Day}}{\text{Year}} * 0.35 \frac{\text{€}}{\text{kWh}} * 500 = 168,745.5 \frac{\text{€}}{\text{Year}}$$

17 server blades are required to run the 500 computer workplaces. Electricity costs per year (including the leap year) for 17 server blades:

$$0.6 \text{ kW} * 24 \frac{\text{h}}{\text{Day}} * 365.25 \frac{\text{Day}}{\text{Year}} * 0.35 \frac{\text{€}}{\text{kWh}} * 17 \approx 31,294.62 \frac{\text{€}}{\text{Year}}$$

Electricity costs per year for the thin clients, screens and server blades:

$$168,745.5\,\frac{{\textcircled{\mbox{\small f}}}}{{\large{\mbox{\small Year}}}}+31,294.62\,\frac{{\Huge{\mbox{\small f}}}}{{\large{\mbox{\small Year}}}}\approx~{\color{black}{\bf 200,040.12}\,\frac{{\Huge{\mbox{\small f}}}}{{\large{\footnotesize{\mbox{\small Year}}}}}$$

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Summary about the Clients

Brave new World?

Organisation

• The era of X-Terminals and Text-Terminals is over

Fundamentals

• Applet Clients did fail in the 1990s but their populularity may grow in the next years

Client-Server

 $\Longrightarrow \mathsf{Google} \ \mathsf{Chrome} \ \mathsf{OS}$

- Fat Clients are standard today
- Thin/Zero Clients are rarely used today
 - Things change slowly in the industry
 - Thin Clients are a hot topic again because of rising energy costs
 - Keyword: Green IT

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Parallel Computers

Image Source: Google

Evolution of the Clients at the Client-Server Model

- In the early days of the client-server era, clients were pure terminals
- With the increasing computing power, the clients became more and more powerful and more and more tasks have been outsourced to them
- But computing power is a resource of which there is never enough available

Do you know the 3 options to reduce the time, which is required to solve computation-intensive tasks?

Analysis of the 3 Options

Brave new World?

Organisation

- Optimization of the algorithms used
 - Algorithms cannot be optimized infinitely
- Increased compute performance with faster CPUs

Client-Server

- The compute power of a computer cannot be increased infinitely
 - Symmetric multiprocessing (SMP) has limitations
 - The memory bus becomes a bottleneck \implies Von Neumann bottleneck (see slide 35)

Fundamentals

• Each additional CPU decreases the relative performance gain

Reason: The storage subsystems cannot deliver the data fast enough to fully utilize all available CPUs

3 Using more than just a single computer system to increase the performance

- The possible performance enhancement is potentially unlimited and it is only limited by these factors:
 - Performance of the nodes
 - Transfer rate of the network technology used
 - Maintenance and administration effort for the connected systems

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Parallel Computers

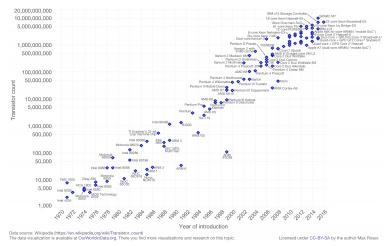
Image Source: Intel

- Published in 1965 by Gordon Moore
- Not a natural law
 - Rule, which is **based of empirical** observation

- Moore originally meant the electronic **components** on of integrated circuit double every 12 months
 - Today, the number of **transistors** on an integrated circuit, or the number of transistors per area unit is taken into account
 - Since the late 1970s, the packing density *only* **doubles every 24 months**
- If we extrapolate the present increase rate, in approx. 2020, a transistor would consist only of a single atom

Brave new World?

Client-Server


Fundamentals Parallel Computers

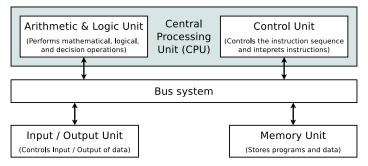
Transistor Count and Moore's Law

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Our word

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are strongly linked to Moore's law.

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 Cloud Computing Von Neumann Bottleneck (1/2)

Brave new World?


Organisation

• The data and control bus is increasingly becoming a bottleneck between the CPU and memory

Client-Server

• The main memory and the bus system are key factors for the performance of a computer

Fundamentals

- The Von Neumann Architecture describes the structure of the general-purpose computer, which is not limited to a fixed program and has input and output devices
- Main difference to modern systems: A single Bus to connect I/O devices directly with the CPU, is impossible today

Parallel Computers

Von Neumann Bottleneck (2/2)

Brave new World?

Organisation

- Main memory is usually DRAM
 - DRAM = Dynamic Random Access Memory

Client-Server

- The access time ("cycle time") of DDR-400 SDRAM is 5 ns (≠ CL value)
 - This corresponds to a frequency of just 200 MHz

$$1 \operatorname{Hz} = \frac{1}{s}$$

 $\frac{1}{5\,\mathrm{ns}} = \frac{1}{5*10^{-9}\,\mathrm{s}} = \frac{1}{5}*10^9\,\mathrm{Hz} = 0.2*10^9\,\mathrm{Hz} = 2*10^8\,\mathrm{Hz} = 200\,\mathrm{MHz}$

- The access time of DDR3-2400 SDRAM is 0.833 ns \Longrightarrow 1200 MHz
- The access time of DDR4-4800 SDRAM is 0.417 ns \Longrightarrow 2400 MHz
- Caches reduce the bottleneck impact (\implies see memory hierarchy)
 - Cache is SRAM and its access speed is close to the CPU speed
 - SRAM = Static Random Access Memory
- If multiple CPUs (or cores) share the main memory and thus share the memory bus ⇒ impact of the Von Neumann bottleneck grows

Amdahl's Law

Organisation

Published in 1967

Brave new World?

- Named after Gene Myron Amdahl
- Calculates the maximum expected acceleration of programs by parallel execution on multiple CPUs

Client-Server

- According to Amdahl, the performance gain is limited mainly by the sequential part of the problem
 - A program can never be fully executed in parallel
 - Program components such as process initialization and memory allocation only run once on a single CPU
 Those parts of the program cannot be executed in parallel

Fundamentals

• Some parts of the program depend on the sequence of events, input-output and of intermediate results

37/67

Parallel Computers

Image source: archive.computerhistory.org

Fundamentals

Amdahl's Law – Principle (1/3)

Source: https://en.wikipedia.org/wiki/Amdahls_law

- The sequential and parallel executable parts of the program are identified
- P is the parallel portion and (1 P) is the sequential portion
- Total runtime of the program:

$$1 = (1 - P) + P$$

- Example: A program requires 20 hours CPU time with a single CPU
 - For a single hour, the process runs sequentially
 - The remaining 19 hours are 95% of the total effort and can be distributed to any number of CPUs
 - But the total computation time can never fall under a single hour
 - Not even with an infinite number of CPUs
 - Therefore, the maximum acceleration (SpeedUp) in theory is factor 20

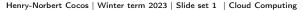
Image source: Wikipedia

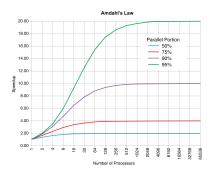
Amdahl's Law – Principle (2/3)

Client-Server

Fundamentals

• N = number of CPUs


Brave new World?


Organisation

- (1-P) =sequential portion
- (P/N) = accelerated parallel portion
- S =SpeedUp (acceleration)

$$S = \frac{1}{(1-P) + \frac{P}{N}} \le \frac{1}{(1-P)}$$

- With an rising number of CPUs, the acceleration depends more and more of the sequential part
- The graph does converge to 1/(1-P)

Bad news:

This is too much optimistic. In practice, things are much worse!

- The load caused by communication and synchronization rises with a growing number of CPUs
 - $\bullet\,$ For this reason, the inequality is extended by factor o(N), which grows when N grows

$$S = \frac{1}{(1-P) + o(N) + \frac{P}{N}} \le \frac{1}{(1-P)}$$

- $\bullet\,$ Because of o(N), the graph does not converge to 1/(1-P) any longer
 - The graph reaches a maximum and then declines when additional CPUs are used

 \Longrightarrow see slides 46, 50 and 53

Amdahl's Law – Issues

Brave new World?

Client-Server

Organisation

• Amdahl's law does not take into account the **cache** and the effects, which are caused by the cache in practice

Fundamentals

- A growing number of CPUs also increases the quantity of fast memory which is available
- In the optimal case, the entire data of the problem can be stored in the cache, which is a faster than the main memory
 - In such a case (very rare!), a super-linear SpeedUp may occur, which leads to an acceleration which is exceeds the additional compute power

 $S_{(p)} = \frac{t_{(s)}}{t_{(p)}} \qquad \qquad S_{(p)} = \text{Speedup Factor when using } p \text{ CPU cores of a} \\ \begin{array}{l} & \text{multiprocessor system} \\ & t_{(s)} = \text{Execution time by using a single CPU cores} \\ \hline & t_{(p)} = \text{Execution time by using } p \text{ CPU cores} \\ \end{array}$

- The max. SpeedUp is usually p with p CPU cores (\Longrightarrow linear SpeedUp)
- A super-linear SpeedUp is greater than p
- The problems to be addressed in distributed computing today are very big and the sequential part of these problems is very small

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Parallel Computers

Granularity

- A daily life version of Amdahl's law is the wallpaper example
 - A painter needs 1 hour for wallpapering a room
 - Realistic: 2 painters wallpaper the room in 30 minutes
 - Unrealistic: 60 painters wallpaper the room in 1 minute
 - Reason: The painters are standing in each others way
 - There are disputes caused by limited resources (table, ladder...)
 - Probably with 60 painters, it would take more than 30 minutes
 - With 60 painters, a room cannot be wallpapered 60 times as fast
 - But this works for a hotel with 60 rooms, when the painters are distributed to the rooms
- Transferred to parallel computers, this means that with a growing number of CPUs, the problem size should grow too
- The problem needs to scale with the number of CPUs
- This finding initiated the development of Gustafson's law in 1988

Gustafson's Law

Brave new World?

Organisation

- Amdahl's law considered mainly small problems
 - But: the bigger a parallelizable problem is, the smaller is the portion of the sequential part

Client-Server

- Gustafson's Law from John Gustafson (1988) says that a problem, which is sufficiently large, can be parallelized efficiently
 - Difference to Amdahl's law:
 - The parallel portion of the problem grows with the number of CPUs
 - The sequential part is not limiting, because it gets more and more unimportant as the number of CPUs rises

Gustafson, Montry, Benner. Development of Parallel Methods For a 1024-Processor Hypercube. Sandia National Laboratories. 1988

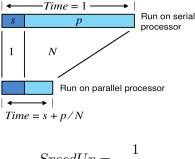
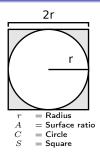


Image source: siliconsemiconductor.net

Fundamentals

Parallel Computers

Gustafson's Law: Speedup



$$SpeedUp = \frac{1}{s + \frac{p}{N}}$$

- If the number of CPUs grows to infinity, the SpeedUp grows linear with the number of CPUs
- Big problems, where the SpeedUp is nearly equivalent to the number of CPUs, exist among others in hydrodynamics, structural engineering and meteorology

Source: http://www.johngustafson.net/pubs/pub13/amdahl.pdf

Example: Calculation of π via Monte Carlo Simulation

y _____

Image source:

Wikipedia

- $\bullet\,$ Inscribe a circle of radius r inside a square with side length $2r\,$
- Generate random dots in the square
 - The number of dots in ${\cal A}_{\cal C}$ in relation to the number of dots in ${\cal A}_{\cal S}$ is equal to the surface ratio

$$\frac{A_C}{A_S} = \frac{\pi \cdot r^2}{(2 \cdot r)^2} = \frac{\pi \cdot r^2}{4 \cdot r^2} = \frac{\pi}{4}$$

- The dots can be generated (X/Y axis values via random) in parallel by the workers
- The master receives from each worker the number of calculated dots in *A*_C and calculates:

$$\frac{4 \cdot \text{dots in } A_C}{\text{dots in } A_S} = \pi$$

Brave new World?

d? Client-Server

Fundamentals ○○○○○○○○○○○○○○○○○○○○○○○○○○○ Parallel Computers

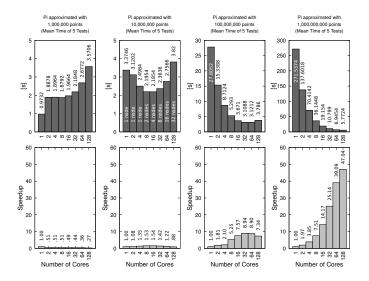
π Approximation with 32 Raspberry Pi 2 and MPI

Performance and Energy-Efficiency Aspects of Clusters of Single Board Computers. Christian Baun. International Journal of Distributed and Parallel Systems (IJDPS), Vol.7, No.2/3/4, 2016, S.13-22. http://aircconline.com/ijdps/V7N4/ 7416ijdps02.pdf

- 33 Raspberry Pi 2 (900 MHz)
 - 32 worker nodes and 1 master
 - 128 CPU cores
 - 24.7 Gflops
 - 1 GB main menory per node
 - 100 MBit/s Ethernet

This computation power is similar to an Intel Core 2 Quad Q9450 2.66 Ghz from 2008, which has approx. 25.6 Gflops

Source: https://www.tecchannel.de/a/ test-intel-core-i7-mit-nehalemquad-core,1775602


• Do you think the problem size has a strong impact on the scalability?

Brave new World?

Client-Server

 Parallel Computers

Can you see Amdahl's Law and Gustafson's Law?

Brave new World?

Client-Server

Fundamentals ○○○○○○○○○○○○○○○○○○○○○○○○○○○ Parallel Computers

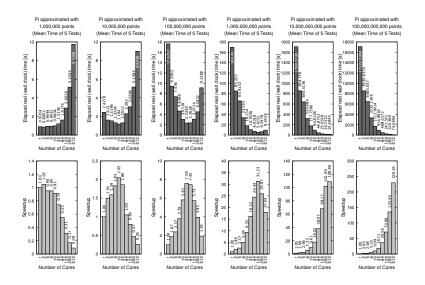
Our Cluster with 128 RPi 3 with 512 CPU Cores (until 2/2019)

Client-Server

Fundamentals

Parallel Computers

It was not a Beauty but it worked well...



Brave new World?

Client-Server

 Parallel Computers

With 512 CPU cores the Results get more interesting

Another Example: task-distributor + POV-Ray

- Ray tracing is an interesting topic for parallel systems
- POV-Ray is a free, stable and feature-rich ray tracing solution http://www.povray.org
- Problem in 2015: no working (maintained) POV-Ray solution for parallel image computation in clusters existed
- Solution: task-distributor

http://github.com/christianbaun/task-distributor

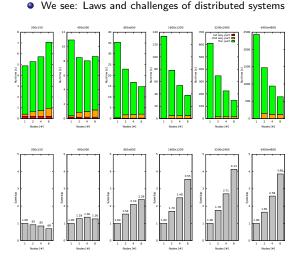
Combination of the partial images to the final image on one node

Parallel image computation in clusters with task-distributor. Christian Baun. SpringerPlus 2016 5:632. http://springerplus.springeropen.com/articles/10.1186/s40064-016-2254-x Client-Server

Fundamentals

Parallel Computers

Clusters used in 2015



- Clusters with 8 nodes (RPi 1) each
- One single core CPU per node
- 512 MB main memory per node

Mobile clusters of single board computers: an option for providing resources to student projects and researchers. Christian Baun. SpringerPlus 2016 5:360. http://springerplus.springeropen.com/articles/10.1186/s40064-016-1981-3

Some Observations with task-distributor + POV-Ray

- Amdahl's law: The performance gain is limited mainly by the sequential part of the problem
- Gustafson's law: A sufficiently large problem can be parallelized efficiently
- The sequential part gets more and more unimportant as the number of CPUs rises
- Swap with 6400x4800 (convert consumes approx. 500 MB RAM for the partial images. But only 512 MB - 16 MB for the GPU - Space)

Fundamentals

Magnitudes of Data

- Magnitudes and units
- The size of storage is measured in Bytes

Kilobyte	(KB)	10^{3}	= 1,000 Bytes
Megabyte	(MB)	10^{6}	= 1,000,000 Bytes
Gigabyte	(GB)	10^{9}	= 1,000,000,000 Bytes
Terabyte	(TB)	10^{12}	= 1,000,000,000,000 Bytes
Petabyte	(PB)	10^{15}	= 1,000,000,000,000,000 Bytes
Exabyte	(EB)	10^{18}	= 1,000,000,000,000,000,000 Byte
Zettabyte	(ZB)	10^{21}	= 1,000,000,000,000,000,000,000 Byte

Kibibyte	(kibi)	2^{10}	= 1,024 Bytes
Mebibyte	(mebi)	2^{20}	= 1,048,576 Bytes
Gibibyte	(gebi)	2^{30}	= 1,073,741,824 Bytes
Tebibyte	(tebi)	2^{40}	= 1,099,511,627,776 Bytes
Pebibyte	(pebi)	2^{50}	= 1,125,899,906,842,624 Bytes
Exbibyte	(exbi)	2^{60}	= 1,152,921,504,606,846,976 Bytes
Zebibyte	(zebi)	2^{70}	= 1,180,591,620,717,411,303,424 Bytes

Bill Gates (1981)

"640 Kilobyte ought to be enough for anybody."

- Common assumptions about data:
 - It is easy to store data today
 - It is easy to transmit and transport data today

Client-Server

Fundamentals

Parallel Computers

Two Points of View

Seymour Cray (1925 - 1996)

"If you were plowing a field, what would you rather use? Two strong oxen or 1024 chickens?"

W. Gropp, E. Lusk, A. Skjellum. Using MPI. The MIT Press (1996)

"To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic ox."

• What does this mean?

Brave new World?

Client-Server

Fundamentals Parallel Computers

Seymour Cray (1925 – 1996)

Henry-Norbert Cocos | Winter term 2023 | Slide set 1

- Seymour Cray founded Cray Research in 1972, the first successful company for the development and sale of supercomputers
- Cray was an opponent of the multiprocessing
- Crays supercomputers had few, but very powerful CPUs

"Anyone can build a fast CPU. The trick is to build a fast system."

Image source:

http://www.crav-cvber.org/memorv/scrav.php Cloud Computing

Background

- Until the 1990s, the acceleration of single CPU had much potential to increase the compute power
 - Today, it is hardly possible to accelerate individual CPU cores, without causing an increase in the required electric power input, which causes to additional waste heat
- Ultimate limits will prevent Moore's law to be valid forever
 - Someday, the traditional way to improve the performance of CPUs (increasing the packing density and clock frequency) will not work any longer
- In the last years, increasing the CPU performance was achieved almost exclusively by increasing the number of CPU cores
- At the time of Seymour Cray, powerful computers were expensive
- Since several years, the CPUs of inexpensive desktop systems are almost as powerful as CPUs in supercomputers

Fundamentals

Parallel Computers

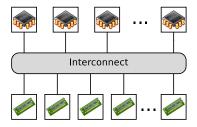
Brian Hayes. Collective Wisdom. American Scientist (1998)

If you have a big problem to solve, recruiting a few percent of the CPUs on the Net would gain you more raw power than any supercomputer on earth.

- Sequential operating computers which follow the Von Neumann architecture are equipped with:
 - A single CPU
 - A single main memory for the data and the programs
- For **parallel computers**, 2 fundamentally different variants exist:
 - Systems with shared memory
 - Systems with distributed memory

Shared Memory

Brave new World?


Organisation

• For systems with **shared memory**, the entire memory is part of a uniform address space, which is accessed by all CPUs

Fundamentals

• The memory is accessed via an interconnect

Client-Server

- Problem: Write operations of the CPUs must be coordinated
- Further problem: Data inside the CPU caches
 - If a memory cell duplicated in multiple CPU caches, any change in the memory cell must be propagated to all caches

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Parallel Computers

Symmetric and Asymmetric Multiprocessing

Client-Server

Organisation

Brave new World?

- Most multiprocessor systems today operate according to the symmetric multiprocessing (SMP) principle
 - SMP allows to dynamically distribute the running processes to all available CPUs

Fundamentals

- All CPUs can access the memory with the same speed
- In multiprocessor systems, which operates according to the asymmetric multiprocessing principle, each CPU must be assigned to a fixed task
 - One or more CPUs run the operating system
 - The other processes are distributed to the remaining CPUs
 - Typically, the CPUs are identical
 - Today, it exists often a main CPU and some subordinated CPUs, which are focused to specific tasks

Parallel Computers

Examples for Asymmetric Multiprocessing (1/2)

Client-Server

• IBM Cell processor

Brave new World?

• A single main CPU (PowerPC Processing Element) and 8 CPUs (Synergistic Processing Elements), which are specialized for calculations

Fundamentals

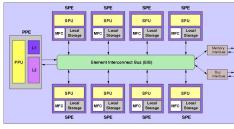
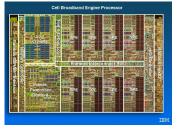



Image source:

Organisation

Parallel Computers

Examples for Asymmetric Multiprocessing (2/2)

Client-Server

• Digital Equipment Corporation (DEC) VAX-11/782

Brave new World?

Organisation

• All I/O devices must be connected to the primary CPU

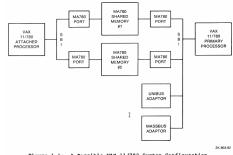


Figure 1-1: A Possible VAX-11/782 System Configuration

- 2. Memory
 - There may be from two to four MA780 shared memory subsystems, each one containing a maximum of 2 megabytes of memory.
- Peripheral Devices

Fundamentals

 All active peripheral devices must be connected to the primary processor. Peripheral devices connected to the attached processor are ignored.

Source:

http://www.9track.net/pdf/dec/vms/v3/aa-m543a-te.pdf

Parallel Computers

0000000000

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Dual or Quad Processor Mainboard (SMP)

Image source: Google image search, servershop24.de, ebay (Supermicro), Puget Systems

Brave new World?

Client-Server

Fundamentals

Parallel Computers

In the Professional Sector Today: Blades (IBM HS21)

Image source: http://commons.wikimedia.org/wiki/File:IBM_BladeCenter_HS21_8853_JPN_JPY.jpg Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Brave new World?

Client-Server

Fundamentals

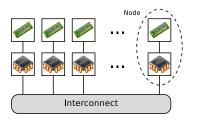
Parallel Computers

BladeCenter for the Blades (IBM HS20)



Image source: http://www.flickr.com/photos/jemimus/74452762/

Distributed Memory \implies Cluster Systems (see Slide Set 2)


• Each CPU can only access its own local memory

Client-Server

- The communication between the CPUs takes place via a network connection
 - Network connections are much slower, compared with the data rate between CPU and memory

Fundamentals

• In a parallel computer, every single CPU and it's local memory, are is independent node

Brave new World?

Organisation

- A system with distributed memory is also called Cluster or Multicomputer, because each node is an independent computer with a Von Neumann architecture
- Nodes of the cluster can also be SMP systems...

Henry-Norbert Cocos | Winter term 2023 | Slide set 1 | Cloud Computing

Parallel Computers

Brave new World?

Client-Server

Fundamentals

Parallel Computers

Thank You For Your Attention!

Henry-Norbert Cocos, M.Sc

Frankfurt University of Applied

Sciences

Room 1-230

- ☎ +49 69 1533-2699
- 🖂 cocos@fb2.fra-uas.de
- 🕏 www.henrycocos.de

