
Green Cloud
Computing
Guest Lecture
Frankfurt University of Applied Sciences

Green Cloud Computing

2

Vincent Rossknecht
Sustainable Software

Architecture

Uwe Eisele
Sustainable Software

Architecture

Green Cloud Computing

3

Sustainability by IT Sustainability in IT
The climate crisis and global
transformations pose new challenges
for the use of new technologies and IT
applications.

Software no longer has to be only in-
time, in-function, in-budget and in-
quality, but increasingly also in-climate.

Green Cloud Computing

4

How high do you estimate the energy consumption by the cloud?

What do you think are the biggest challenges in operating a
software system in the cloud?

Green Cloud Computing

6

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Green Cloud Computing

7

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

CO2 Emissions of Data Centers – Worldwide

8

Sources:
IEA: Tracking Data Centers and Data Transmission Networks (https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks)
Umweltbundesamt: Emissionen in Deutschland (https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland#emissionsentwicklung)
ATAG: Aviation Industry Facts & Figures (https://www.atag.org/facts-figures/)

330

731

914

0

100

200

300

400

500

600

700

800

900

1000

M
ill

io
n

 t
o

n
n

e
s

C
O

2
e

GHG Emissions

Data centres and data transmission networks (2020)

Germany (2020)

Flights (2019)

0.6%

1.3%

2.1%

Sustainability Goals of Cloud Providers

9

net-zero emissions
and 24/7 carbon-free

energy by 2030

carbon negative by 2030

remove historical carbon
emissions by 2050

net-zero carbon
emissions by 2040

Waiting for Cloud Providers to achieve their goals is not enough!

Limiting warming to around 1.5°C requires global GHG emissions to peak before 2025.

Carbon-free energy does not include GHG emitted by the production of equipment, buildings and power plants.

10

▪ 2021 data centers required 3.4% of
total energy consumption

▪ But: Data centers became more energy
efficient over the years!

Energy Consumption of Data Centers – Germany

More efficient data centers are not
sufficient to counter the rising energy

demand!

Source: Borderstep: Data centers 2021 – Cloud computing drives the growth of the data center industry and its energy consumption
(https://www.borderstep.de/wp-content/uploads/2022/08/Borderstep_Rechenzentren_2021_eng.pdf)

C
o

m
p

u
te

O
th

er
s

11

Why is Cloud Computing more energy efficient
than operating On-Premises?

Energy Efficiency in Cloud Computing

Dynamic Provisioning
▪ Traditional data centers are build

for worst-case scenarios
▪ Cloud Computing can help to

avoid long-term overprovisioning

Multi-Tenancy
▪ Cloud providers serve multiple

customers on the same
infrastructure

▪ High number of customers flattens
individual peaks

Server Usage
▪ On-Premises infrastructure has

usually low utilization rates

Hardware Efficiency
▪ Cloud data centers usually have a

lower PUE value
▪ Use of modern technologies is

more cost-effictive

Garg & Buyya: Green Cloud Computing and Environmental
Sustainability (2012). Harnessing Green IT: Principles and Practices.

12

Environment Agency Austria & Borderstep Institute: Energy-efficient Cloud Computing
Technologies and Policies for an Eco-friendly Cloud Market (2021). European Commission.

▪ Share of cloud data centers is
steadily increasing

▪ We already know:
▪ In many cases, Cloud

Computing is more energy-
efficient than operating On-
Premises.

▪ Nevertheless, energy
consumption by data centers is
rising continuously

▪ Resource consumption must also
be reduced in the cloud!

Energy Consumption by Data Centers – EU-28

Energy Consumption by Data Centers

13

By 2030, data centers
could represent 2.5% to
19% of annual global
electricity
consumption!

Environment Agency Austria & Borderstep Institute: Energy-efficient Cloud Computing Technologies and
Policies for an Eco-friendly Cloud Market (2021). European Commission.

The 5 Pillars of Green Software

Optimization of
the software

product

Optimization of
the IT

infrastructure

Optimization of
utilization/

Optimal use of
the cloud
platform

Optimization of
the development

process

Optimization of
the renewable

energy share for a
workload

Measurement of resource efficiency

Optimization of resource efficiency

Energy-Efficient Software

1 2 3 4 5

14

Green Cloud Computing

15

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Make Carbon Emissions Measurable

Goal:

Reduce Carbon

Emissions
How to measure the
carbon emissions of

software applications?

Solution:
Carbon Proxies

Electricity

Memory

Costs

CPU Usage

. . .

16

Camunda
Carbon Reductor

Make Carbon Emissions Measurable

CO2

(gCO2, gCO2/kWh,…)

Energy
(J, W, PUE, …)

APM
(CPU, RAM, ...)

17

18

▪ Some cloud providers offer tools to monitor carbon emissions
▪ Tools do not provide detailed data, only on service- and region-level
▪ Not suitable to identify components of high energy usage or for optimizations
→ Carbon Proxies are needed to provide more detailed data

Metrics – Carbon Footprint Tools

Microsoft Sustainability Calculator Amazon Customer Carbon Footprint Tool

Sustainability of Cloud Providers
Greenpeace Study 2017 – Clicking Clean

19

Sustainable Europian Cloud Providers

Sustainability of Cloud Providers
How to choose the most sustainable cloud provider?

20

Comparison is difficult:
▪ No current data on greenhouse gases only emitted through cloud services
▪ Sustainability reports only include data on overall company

Idea: PUE = Power Usage Effectiveness

PUE = total energy usage of data center / energy usage by IT systems

21

Metrics – Energy Efficiency of Data Centers
▪ Close to 1,0 indicates a good data center efficiency
▪ Currently the only international metric to compare the efficiency of data centers

Critique:
▪ IT systems might be highly energy efficient, while other building components are not
→ results in high PUE

Average PUE metrics:
▪ Microsoft Azure: 1.18 (first published in April 2022[1])
▪ Google Cloud: 1.10 (regular publication [2])
▪ AWS: 1.135 (no publication, approximation by CCF[3])

[1]: https://azure.microsoft.com/en-us/blog/how-microsoft-measures-
 datacenter-water-and-energy-use-to-improve-azure-cloud-sustainability/
[2]: https://www.google.com/about/datacenters/efficiency/
[3]: https://www.cloudcarbonfootprint.org/docs/methodology/#power-usage-
 effectiveness

Green Cloud Computing

22

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

High Resource Utilizations

23

▪ Depending on the server, already
50% of power are used without any
workload

▪ Energy efficiency increases with
increasing utilization of the server

L. A. Barroso and U. Hölzle, "The Case for Energy-Proportional
Computing," in Computer, vol. 40, no. 12, pp. 33-37, Dec. 2007, doi:
10.1109/MC.2007.443.

Why should servers be utilized as much as possible?
An unused server doesn't consume any electricity, does it?

High Resource Utilizations

24

▪ VMs consume very little power, depending on the size of the server and
the hypervisor

▪ Resources can be reserved for potential VMs by the hypervisor
▪ Poor efficiency when few VMs are provisioned on a hypervisor

Why should virtual machines also be utilized as much as possible?
A virtual unit itself does not consume any power, does it?

→ Cloud providers recommend stopping unused VMs to be
able to use the resources on the same hypervisor for VMs of
other customers

Problem: Low Utilization

25

Quelle : „Improving Energy And Power Efficiency In The Data Center“, SemiconductorEngineering

30 % wasted

Service Models – Overview

26

IaaS CaaS PaaS FaaS DBaaS SaaS

U
n

m
an

ag
e

d
M

an
ag

ed
Se

rv
er

le
ss

U
T Weeks / Days Days / Hours Day / Hours Minutes / Seconds

Energy Efficiency

En
er

gy
 E

ff
ic

ie
nc

y

ta
sk

-o
ri

en
te

d
se

rv
er

-o
ri

en
te

d

M
an

ag
ed

Service Models – Functions as a Service (FaaS)

27

▪ Uses the serverless operating model
▪ Deployment of functions in the cloud, which are executed on demand

Aspects of energy efficiency:
▪ Resources are used to fit; no over-provisioning or under-provisioning

▪ Scale-to-Zero

Green Cloud Computing

28

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in Cloud

▪ Optimization measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Green Cloud Computing

29

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in Cloud

▪ Optimization measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Overprovisioning

30

Anti-pattern when operating in the Cloud: Overprovisioning

▪ Permanent allocation of resources in
order to be able to serve peak loads

▪ On average, resource allocation exceeds
actual demand

Examples:
▪ Provision online shop for peak loads in

Christmas season
▪ Provision for execution of scheduled jobs

Overprovisioning

31

▪ Overprosioning often occurs when static or reactive scaling is used

Static Scaling Reactive Scaling
No elasticity → overprovisioning
needed to handle peak loads

Resources are not provided fast
enough → overprovisioning needed

Scaling Strategies
▪ Different scaling strategies to avoid overprovisioning and to save resources

Pro-Active /
On-Prediction

Random /
On-Coincidence

Demand Shifting /
On-Availability

Demand Shaping /
On-Availability

32

Scaling Strategies – Pro-Active

▪ Pro-active provisioning of
resources

▪ Demand-driven scaling
before actual demand is
present (“On-Prediction”)

▪ Counteracts
overprovisioning that occurs
due to excessive startup
times of VMs or other
instances

33

Scaling Strategies – Random

34

▪ Random provisioning of resources to equalize peak loads
▪ Regular workloads will be started at random times to better distribute

the load on the system
▪ Only possible for workloads without user interaction

Examples:
▪ Event-Streaming applications
▪ Creating a database backup that would otherwise always run at 12 a.m.

Scaling Strategies – Demand Shaping

35

▪ "On-availability" scaling shapes demand
according to available supply

▪ Strategy for flexible workloads without
time constraints

▪ Adjusts the provisioned resources to
available resources
▪ Examples for constrained resources:

CPU capacity, renewable energies …
▪ Workloads can be matched to free

capacities of the cloud provider with
on-demand, spot and preemptible
instances

Scaling Strategies – Demand Shifting

36

▪ Time-flexible workloads are shifted to times or regions where they can
be executed with lower carbon emissions

▪ Alternatively, execution is
shifted according to other
criteria
▪ Times or regions where

unused cloud provider
resources are available

▪ Times or regions where own
unused resources are
available

Reduce Carbon Emissions
Carbon Intensity

Carbon intensity varies by location Carbon intensity changes over time

Carbon intensity measures how much CO2e is emitted per KWh of electricity.

Reduce Carbon Emissions
Marginal Carbon Intensity

marginal carbon intensity of 0 gCO2eq/kWh

Demand and supply of electricity needs to be always balanced. Marginal carbon intensity is the carbon intensity
of the power plant that would have to be employed to meet new demand.

Green Cloud Computing

39

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in Cloud

▪ Optimization measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Resource Selection – CPU

40

Selecting a CPU:
▪ Architecture of the CPU is an important factor
▪ ARM based CPUs often much more energy efficient than x86/64 alternatives
▪ Performance for many application areas comparable
▪ Recompilation might be necessary as many applications were developed on x64

J. Kalyanasundaram and Y. Simmhan, "ARM Wrestling with Big Data: A Study of
Commodity ARM64 Server for Big Data Workloads," 2017 IEEE 24th International
Conference on High Performance Computing (HiPC), Jaipur, India, 2017, pp. 203-
212, doi: 10.1109/HiPC.2017.00032.

Runtime of workloads x64 vs ARM64 Power consumption x64 vs. ARM64

Resource Selection – Locality

41

▪ Cloud regions vary significantly in terms of
carbon emissions

▪ Google offers the Region Picker to take
into account carbon footprint, price, and
latency

▪ Region Picker does not take energy mix
into account
→Nuclear power plants are considered

"low carbon“

Resource Selection – Locality

42

▪ Electricity Maps as an
alternative to Google
Region Picker

▪ WattTime provides data
on power plant emissions
by using measurements
from space

https://app.electricitymaps.com/map

Green Cloud Computing

43

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Scaling Strategies
▪ Resource Selection – CPU & Location

▪ Cloud Native Software Development

▪ Rebound Effects

Cloud Native Software Development

44

Prerequisites for taking advantage of all the
benefits in terms of energy efficiency:

▪ Fast startup times for flexible scalability
▪ Fast "graceful shutdowns" to be able to

shut down applications without data
corruption

▪ Available failover strategy to get back
online quickly

▪ Should be stateless
▪ Have good scalability according to the

scale cube model

Applications should follow the 12 Factor Method (https://12factor.net/)

Cloud Native Software Development

45

Talk by Uwe Friedrichsen:
https://speakerdeck.com/ufried/patterns-of-sustainability-
going-green-in-it

Exercise

46

https://github.com/envite-
consulting/showcase-graalvm

Green Cloud Computing

47

▪ Energy Consumption by Data Centers

▪ Metrics & Sustainability of Cloud Providers

▪ Resource Utilization in the Cloud

▪ Optimization Measures for IaaS and PaaS
▪ Resource Selection – CPU & Location
▪ Scaling Strategies
▪ Efficient Workload Distribution

▪ Cloud Native Software Development

▪ Rebound Effects

Rebound Effects

48

▪ Optimizations lead to energy and costs savings
▪ Risk: savings encourage changed behavior and lead to increased energy usage

energy efficient
applications

lower carbon
footprint &

bills

lower carbon
footprint &

bills

direct

indirect

increase
performance by

using more servers

develop
(optional) new

features
more energy

usage,
higher costs

Green Cloud Computing

49

Can you think of any optimizations that could be made to your
project from this semester to improve its energy efficiency?

Questions?
Thank you!

Uwe Eisele

uwe.eisele@envite.de

Vincent Rossknecht

Vincent.rossknecht@envite.de

envite consulting GmbH

www.envite.de

Serverless with
Java
Best Practices for Serverless with Java

Book Demo App

52

Startup Time

53

0.5 CPU and 512MB Memory

0.2s

10s

Load Test (30 runs a‘ 600 requests)

54

0.5 CPU and 512MB Memory

Load Test (30 runs a‘ 600 requests)

55

0.5 CPU and 512MB Memory

Load Test (200 runs a‘ 600 requests)

56

0.5 CPU and 512MB Memory

Load Test (200 runs a‘ 600 requests)

57

0.5 CPU and 512MB Memory

Load Test (200 runs a‘ 600 requests)

58

0.5 CPU and 512MB Memory

Load Test (150 runs a‘ 600 requests)

59

0.5 CPU and 512MB Memory

Container
Image Layers
Best Practices for Small Image Footprint

Java Container Image Layers

61

OS (e.g. Alpine)

JRE (e.g. Eclipse Temurin)

Application Dependencies

Application

Fr
eq

u
en

cy
 o

f
C

h
an

ge

Application Snapshot Dependencies

docker.io/eclipse-temurin:21.0.3_9-jre-alpine

Spring Boot Layered Container Image (Example)

62

OS (Alpine 3.19)

JRE (Eclipse Temurin 21)

Application Dependencies

Application

Fr
eq

u
en

cy
 o

f
C

h
an

ge

7.4 MB

182.0 MB

Application Snapshot Dependencies

Spring Boot Loader

31.0 MB

0.0 MB

0.4 MB

0.1 MB

Spring Boot Layered Container Image (Example)

63

#############################
Application Builder
#############################
FROM eclipse-temurin:21.0.3_9-jdk-alpine as builder

ARG BUILDER_WORKDIR
WORKDIR ${BUILDER_WORKDIR}
Download dependencies
COPY pom.xml mvnw ./
COPY .mvn .mvn
RUN ./mvnw verify --fail-never
Build layered application jar
COPY src src
RUN ./mvnw package

ARG BUILDER_DIST_DIR
Extract layers from application jar file
RUN java -Djarmode=tools -jar target/demo-book-*.jar extract \

--layers --launcher --destination "${BUILDER_DIST_DIR}"

#############################
Build Layered Image
#############################
FROM eclipse-temurin:21.0.3_9-jre-alpine

RUN adduser -D -s /bin/false -u 1000 appuser

WORKDIR /opt/dist
ARG BUILDER_DIST_DIR
COPY --from=builder ${BUILDER_DIST_DIR}/dependencies/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/snapshot-dependencies/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/spring-boot-loader/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/application/ ./

CMD exec java ${JAVA_OPTS} -server \
"org.springframework.boot.loader.launch.JarLauncher"

EXPOSE 8080

USER appuser

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>

<layers>
<enabled>true</enabled>

</layers>
</configuration>

</plugin>

pom.xml (enable layered jar)

Dockerfile (Multi-Stage build)

Spring Boot Layered Container Image (Example)

64

• (+) Changes to the application code does not require re-build and re-distribution of dependencies
• (+) Unpacking jar also reduces startup time (1)

(1) https://docs.spring.io/spring-boot/reference/deployment/efficient.html#deployment.efficient.unpacking

Recommendations
• Use minimalistic base image (Alpine + JRE), to keep image size small
• Use same base image in your applications to increase re-use of layers on target hosts

Important
• In-order to avoid re-build of layers without change you need to do additional steps

on CI/CD Pipeliens to re-use the image cache

docker.io/alpine:3.20

Java Container Image with JLink (Example)

65

OS (Alpine 3.20)

Custom JRE with JLink (based on Eclipse Temurin 21)

Application Dependencies

Application

Fr
eq

u
en

cy
 o

f
C

h
an

ge

7.8 MB

77.0 MB

Application Snapshot Dependencies

Spring Boot Loader

31.0 MB

0.0 MB

0.4 MB

0.1 MB

Java Container Image with JLink (Example)

66

#############################
Application Builder
#############################
FROM eclipse-temurin:21.0.3_9-jdk-alpine as builder

ARG BUILDER_WORKDIR
WORKDIR ${BUILDER_WORKDIR}
Download dependencies
COPY pom.xml mvnw ./
COPY .mvn .mvn
RUN ./mvnw verify --fail-never
Build layered application jar
COPY src src
RUN ./mvnw package

ARG BUILDER_DIST_DIR
Extract layers from application jar file
RUN java -Djarmode=tools -jar target/demo-book-*.jar extract \

--layers --launcher --destination "${BUILDER_DIST_DIR}"

Detect JRE modules required by your application
RUN jdeps --print-module-deps --ignore-missing-deps \

--multi-release 21 --recursive \
--class-path "${BUILDER_DIST_DIR}/dependencies/BOOT-INF/lib/*" \
"${BUILDER_DIST_DIR}" > target/deps.info

ARG BUILDER_JRE_DIR
Build custom JRE which only contains required modules
RUN jlink --strip-debug --compress zip-6 --no-header-files --no-man-pages \

--add-modules "$(cat target/deps.info),jdk.naming.dns,jdk.crypto.ec" \
--output "${BUILDER_JRE_DIR}"

Generate CDS archive for custom JRE
RUN "${BUILDER_JRE_DIR}/bin/java" -Xshare:dump

#############################
Build Layered Image
#############################
FROM alpine:3.20

RUN adduser -D -s /bin/false -u 1000 appuser

ENV JAVA_HOME="/opt/java/openjdk"
ENV PATH=$JAVA_HOME/bin:$PATH
ARG BUILDER_JRE_DIR
COPY --from=builder ${BUILDER_JRE_DIR} $JAVA_HOME

WORKDIR /opt/dist
ARG BUILDER_DIST_DIR
COPY --from=builder ${BUILDER_DIST_DIR}/dependencies/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/snapshot-dependencies/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/spring-boot-loader/ ./
COPY --from=builder ${BUILDER_DIST_DIR}/application/ ./

CMD exec java ${JAVA_OPTS} -server \
"org.springframework.boot.loader.launch.JarLauncher"

EXPOSE 8080

USER appuser

Dockerfile (Multi-Stage build)

Spring Boot Layered Container Image (Example)

67

• (+) Reduced image size (in this example 105MB smaller)
• (+) Reduced memory consumption during runtime
• (-) If every application uses its own custom JRE, the JRE layer cannot be shared anymore
• (-) If code change adds requirement for an additional JRE module, the JRE needs to be re-build

and re-distributed

Open Issues
• JRE and OS security patches may require re-build and re-distribution of entire image

o Redcuce probability that you are affected
▪ With custom build JRE, you only need to upgrade if a security issue affects a

module which you are using
▪ With very small OS base image, probability is reduced that there is a security issue
▪ You can further reduce size of OS by build your custom OS image e.g. with apko,

which only includes shared libraries you actually need

	Slide 1: Green Cloud Computing
	Slide 2: Green Cloud Computing
	Slide 3: Green Cloud Computing
	Slide 4: Green Cloud Computing
	Slide 6: Green Cloud Computing
	Slide 7: Green Cloud Computing
	Slide 8: CO2 Emissions of Data Centers – Worldwide
	Slide 9: Sustainability Goals of Cloud Providers
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Energy Consumption by Data Centers
	Slide 14: The 5 Pillars of Green Software
	Slide 15: Green Cloud Computing
	Slide 16: Make Carbon Emissions Measurable
	Slide 17: Make Carbon Emissions Measurable
	Slide 18
	Slide 19: Sustainability of Cloud Providers
	Slide 20: Sustainability of Cloud Providers
	Slide 21
	Slide 22: Green Cloud Computing
	Slide 23: High Resource Utilizations
	Slide 24: High Resource Utilizations
	Slide 25: Problem: Low Utilization
	Slide 26: Service Models – Overview
	Slide 27: Service Models – Functions as a Service (FaaS)
	Slide 28: Green Cloud Computing
	Slide 29: Green Cloud Computing
	Slide 30: Overprovisioning
	Slide 31: Overprovisioning
	Slide 32: Scaling Strategies
	Slide 33: Scaling Strategies – Pro-Active
	Slide 34: Scaling Strategies – Random
	Slide 35: Scaling Strategies – Demand Shaping
	Slide 36: Scaling Strategies – Demand Shifting
	Slide 37: Reduce Carbon Emissions
	Slide 38: Reduce Carbon Emissions
	Slide 39: Green Cloud Computing
	Slide 40: Resource Selection – CPU
	Slide 41: Resource Selection – Locality
	Slide 42: Resource Selection – Locality
	Slide 43: Green Cloud Computing
	Slide 44: Cloud Native Software Development
	Slide 45: Cloud Native Software Development
	Slide 46: Exercise
	Slide 47: Green Cloud Computing
	Slide 48: Rebound Effects
	Slide 49: Green Cloud Computing
	Slide 50: Questions?
	Slide 51: Serverless with Java
	Slide 52: Book Demo App
	Slide 53: Startup Time
	Slide 54: Load Test (30 runs a‘ 600 requests)
	Slide 55: Load Test (30 runs a‘ 600 requests)
	Slide 56: Load Test (200 runs a‘ 600 requests)
	Slide 57: Load Test (200 runs a‘ 600 requests)
	Slide 58: Load Test (200 runs a‘ 600 requests)
	Slide 59: Load Test (150 runs a‘ 600 requests)
	Slide 60: Container Image Layers
	Slide 61: Java Container Image Layers
	Slide 62: Spring Boot Layered Container Image (Example)
	Slide 63: Spring Boot Layered Container Image (Example)
	Slide 64: Spring Boot Layered Container Image (Example)
	Slide 65: Java Container Image with JLink (Example)
	Slide 66: Java Container Image with JLink (Example)
	Slide 67: Spring Boot Layered Container Image (Example)

